Projective spaces of a C*-algebra

Autores
Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Materia
PROJECTIVE SPACE
C*-ALGEBRAS
PROJECTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110892

id CONICETDig_05e1e17b7682a0fc8f8b7c3a010468f3
oai_identifier_str oai:ri.conicet.gov.ar:11336/110892
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Projective spaces of a C*-algebraAndruchow, EstebanCorach, GustavoStojanoff, DemetrioPROJECTIVE SPACEC*-ALGEBRASPROJECTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaBirkhauser Verlag Ag2000-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110892Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective spaces of a C*-algebra; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 37; 2; 6-2000; 143-1680378-620XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FBF01192421info:eu-repo/semantics/altIdentifier/doi/10.1007/BF01192421info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:38Zoai:ri.conicet.gov.ar:11336/110892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:38.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Projective spaces of a C*-algebra
title Projective spaces of a C*-algebra
spellingShingle Projective spaces of a C*-algebra
Andruchow, Esteban
PROJECTIVE SPACE
C*-ALGEBRAS
PROJECTIONS
title_short Projective spaces of a C*-algebra
title_full Projective spaces of a C*-algebra
title_fullStr Projective spaces of a C*-algebra
title_full_unstemmed Projective spaces of a C*-algebra
title_sort Projective spaces of a C*-algebra
dc.creator.none.fl_str_mv Andruchow, Esteban
Corach, Gustavo
Stojanoff, Demetrio
author Andruchow, Esteban
author_facet Andruchow, Esteban
Corach, Gustavo
Stojanoff, Demetrio
author_role author
author2 Corach, Gustavo
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv PROJECTIVE SPACE
C*-ALGEBRAS
PROJECTIONS
topic PROJECTIVE SPACE
C*-ALGEBRAS
PROJECTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
description Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
publishDate 2000
dc.date.none.fl_str_mv 2000-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110892
Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective spaces of a C*-algebra; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 37; 2; 6-2000; 143-168
0378-620X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110892
identifier_str_mv Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective spaces of a C*-algebra; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 37; 2; 6-2000; 143-168
0378-620X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FBF01192421
info:eu-repo/semantics/altIdentifier/doi/10.1007/BF01192421
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269920731070464
score 13.13397