Projective spaces of a C*-algebra
- Autores
- Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
PROJECTIVE SPACE
C*-ALGEBRAS
PROJECTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110892
Ver los metadatos del registro completo
| id |
CONICETDig_05e1e17b7682a0fc8f8b7c3a010468f3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110892 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Projective spaces of a C*-algebraAndruchow, EstebanCorach, GustavoStojanoff, DemetrioPROJECTIVE SPACEC*-ALGEBRASPROJECTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaBirkhauser Verlag Ag2000-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110892Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective spaces of a C*-algebra; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 37; 2; 6-2000; 143-1680378-620XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FBF01192421info:eu-repo/semantics/altIdentifier/doi/10.1007/BF01192421info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:59:50Zoai:ri.conicet.gov.ar:11336/110892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:59:50.462CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Projective spaces of a C*-algebra |
| title |
Projective spaces of a C*-algebra |
| spellingShingle |
Projective spaces of a C*-algebra Andruchow, Esteban PROJECTIVE SPACE C*-ALGEBRAS PROJECTIONS |
| title_short |
Projective spaces of a C*-algebra |
| title_full |
Projective spaces of a C*-algebra |
| title_fullStr |
Projective spaces of a C*-algebra |
| title_full_unstemmed |
Projective spaces of a C*-algebra |
| title_sort |
Projective spaces of a C*-algebra |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo Stojanoff, Demetrio |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Corach, Gustavo Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Corach, Gustavo Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
PROJECTIVE SPACE C*-ALGEBRAS PROJECTIONS |
| topic |
PROJECTIVE SPACE C*-ALGEBRAS PROJECTIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics. Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina |
| description |
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics. |
| publishDate |
2000 |
| dc.date.none.fl_str_mv |
2000-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110892 Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective spaces of a C*-algebra; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 37; 2; 6-2000; 143-168 0378-620X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/110892 |
| identifier_str_mv |
Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective spaces of a C*-algebra; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 37; 2; 6-2000; 143-168 0378-620X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FBF01192421 info:eu-repo/semantics/altIdentifier/doi/10.1007/BF01192421 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782320956145664 |
| score |
12.982451 |