Sphere and projective space of a C*-algebra with a faithful state

Autores
Antúnez, Andrea Carolina
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
LetAbe a unitalC*-algebra with a faithful state?. We study the geometry of the unit sphereS?={x?A:?(x*x) = 1}and the projective spaceP?=S?/T. These spaces are shown to be smooth manifoldsand homogeneous spaces of the groupU?(A)of isomorphisms acting inAwhich preserve the inner productinduced by?, which is a smooth Banach-Lie group. An important role is played by the theory of operators inBanach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric inP?, and provethe existence of minimal geodesics, both with given initial data, and given endpoints.
Fuente
Demonstratio Mathematica. 2019; 52(1): 410-427
https://www.degruyter.com/journal/key/dema/52/1/html
Materia
Homogeneous space
Minimal curves
C*-algebra
Projective space
Espacio homogéneo
Curvas mínimas
C*-álgebra
Espacio proyectivoEspaço homogêneo
Curvas mínimas
Álgebra C*
Espaço projetivo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1857

id RIUNGS_6478981228388284659fb66e24cfa4b9
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1857
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Sphere and projective space of a C*-algebra with a faithful stateAntúnez, Andrea CarolinaHomogeneous spaceMinimal curvesC*-algebraProjective spaceEspacio homogéneoCurvas mínimasC*-álgebraEspacio proyectivoEspaço homogêneoCurvas mínimasÁlgebra C*Espaço projetivoFil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.LetAbe a unitalC*-algebra with a faithful state?. We study the geometry of the unit sphereS?={x?A:?(x*x) = 1}and the projective spaceP?=S?/T. These spaces are shown to be smooth manifoldsand homogeneous spaces of the groupU?(A)of isomorphisms acting inAwhich preserve the inner productinduced by?, which is a smooth Banach-Lie group. An important role is played by the theory of operators inBanach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric inP?, and provethe existence of minimal geodesics, both with given initial data, and given endpoints.De Gruyter2025-01-08T16:25:51Z2025-01-08T16:25:51Z2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAntunez, A. C. (2019). Sphere and projective space of a C*-algebra with a faithful state. Demonstratio Mathematica, 52(1), 410-427.2391-4661http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1857Demonstratio Mathematica. 2019; 52(1): 410-427https://www.degruyter.com/journal/key/dema/52/1/htmlreponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttps://doi.org/10.1515/dema-2019-0036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-18T11:36:39Zoai:repositorio.ungs.edu.ar:UNGS/1857instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-18 11:36:39.605Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Sphere and projective space of a C*-algebra with a faithful state
title Sphere and projective space of a C*-algebra with a faithful state
spellingShingle Sphere and projective space of a C*-algebra with a faithful state
Antúnez, Andrea Carolina
Homogeneous space
Minimal curves
C*-algebra
Projective space
Espacio homogéneo
Curvas mínimas
C*-álgebra
Espacio proyectivoEspaço homogêneo
Curvas mínimas
Álgebra C*
Espaço projetivo
title_short Sphere and projective space of a C*-algebra with a faithful state
title_full Sphere and projective space of a C*-algebra with a faithful state
title_fullStr Sphere and projective space of a C*-algebra with a faithful state
title_full_unstemmed Sphere and projective space of a C*-algebra with a faithful state
title_sort Sphere and projective space of a C*-algebra with a faithful state
dc.creator.none.fl_str_mv Antúnez, Andrea Carolina
author Antúnez, Andrea Carolina
author_facet Antúnez, Andrea Carolina
author_role author
dc.subject.none.fl_str_mv Homogeneous space
Minimal curves
C*-algebra
Projective space
Espacio homogéneo
Curvas mínimas
C*-álgebra
Espacio proyectivoEspaço homogêneo
Curvas mínimas
Álgebra C*
Espaço projetivo
topic Homogeneous space
Minimal curves
C*-algebra
Projective space
Espacio homogéneo
Curvas mínimas
C*-álgebra
Espacio proyectivoEspaço homogêneo
Curvas mínimas
Álgebra C*
Espaço projetivo
dc.description.none.fl_txt_mv Fil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
LetAbe a unitalC*-algebra with a faithful state?. We study the geometry of the unit sphereS?={x?A:?(x*x) = 1}and the projective spaceP?=S?/T. These spaces are shown to be smooth manifoldsand homogeneous spaces of the groupU?(A)of isomorphisms acting inAwhich preserve the inner productinduced by?, which is a smooth Banach-Lie group. An important role is played by the theory of operators inBanach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric inP?, and provethe existence of minimal geodesics, both with given initial data, and given endpoints.
description Fil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2019
dc.date.none.fl_str_mv 2019
2025-01-08T16:25:51Z
2025-01-08T16:25:51Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Antunez, A. C. (2019). Sphere and projective space of a C*-algebra with a faithful state. Demonstratio Mathematica, 52(1), 410-427.
2391-4661
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1857
identifier_str_mv Antunez, A. C. (2019). Sphere and projective space of a C*-algebra with a faithful state. Demonstratio Mathematica, 52(1), 410-427.
2391-4661
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1857
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1515/dema-2019-0036
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv Demonstratio Mathematica. 2019; 52(1): 410-427
https://www.degruyter.com/journal/key/dema/52/1/html
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1843613730395389952
score 12.489739