Sphere and projective space of a C*-algebra with a faithful state
- Autores
- Antúnez, Andrea Carolina
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
LetAbe a unitalC*-algebra with a faithful state?. We study the geometry of the unit sphereS?={x?A:?(x*x) = 1}and the projective spaceP?=S?/T. These spaces are shown to be smooth manifoldsand homogeneous spaces of the groupU?(A)of isomorphisms acting inAwhich preserve the inner productinduced by?, which is a smooth Banach-Lie group. An important role is played by the theory of operators inBanach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric inP?, and provethe existence of minimal geodesics, both with given initial data, and given endpoints. - Fuente
- Demonstratio Mathematica. 2019; 52(1): 410-427
https://www.degruyter.com/journal/key/dema/52/1/html - Materia
-
Homogeneous space
Minimal curves
C*-algebra
Projective space
Espacio homogéneo
Curvas mínimas
C*-álgebra
Espacio proyectivoEspaço homogêneo
Curvas mínimas
Álgebra C*
Espaço projetivo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1857
Ver los metadatos del registro completo
id |
RIUNGS_6478981228388284659fb66e24cfa4b9 |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1857 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Sphere and projective space of a C*-algebra with a faithful stateAntúnez, Andrea CarolinaHomogeneous spaceMinimal curvesC*-algebraProjective spaceEspacio homogéneoCurvas mínimasC*-álgebraEspacio proyectivoEspaço homogêneoCurvas mínimasÁlgebra C*Espaço projetivoFil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.LetAbe a unitalC*-algebra with a faithful state?. We study the geometry of the unit sphereS?={x?A:?(x*x) = 1}and the projective spaceP?=S?/T. These spaces are shown to be smooth manifoldsand homogeneous spaces of the groupU?(A)of isomorphisms acting inAwhich preserve the inner productinduced by?, which is a smooth Banach-Lie group. An important role is played by the theory of operators inBanach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric inP?, and provethe existence of minimal geodesics, both with given initial data, and given endpoints.De Gruyter2025-01-08T16:25:51Z2025-01-08T16:25:51Z2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAntunez, A. C. (2019). Sphere and projective space of a C*-algebra with a faithful state. Demonstratio Mathematica, 52(1), 410-427.2391-4661http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1857Demonstratio Mathematica. 2019; 52(1): 410-427https://www.degruyter.com/journal/key/dema/52/1/htmlreponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttps://doi.org/10.1515/dema-2019-0036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-18T11:36:39Zoai:repositorio.ungs.edu.ar:UNGS/1857instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-18 11:36:39.605Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Sphere and projective space of a C*-algebra with a faithful state |
title |
Sphere and projective space of a C*-algebra with a faithful state |
spellingShingle |
Sphere and projective space of a C*-algebra with a faithful state Antúnez, Andrea Carolina Homogeneous space Minimal curves C*-algebra Projective space Espacio homogéneo Curvas mínimas C*-álgebra Espacio proyectivoEspaço homogêneo Curvas mínimas Álgebra C* Espaço projetivo |
title_short |
Sphere and projective space of a C*-algebra with a faithful state |
title_full |
Sphere and projective space of a C*-algebra with a faithful state |
title_fullStr |
Sphere and projective space of a C*-algebra with a faithful state |
title_full_unstemmed |
Sphere and projective space of a C*-algebra with a faithful state |
title_sort |
Sphere and projective space of a C*-algebra with a faithful state |
dc.creator.none.fl_str_mv |
Antúnez, Andrea Carolina |
author |
Antúnez, Andrea Carolina |
author_facet |
Antúnez, Andrea Carolina |
author_role |
author |
dc.subject.none.fl_str_mv |
Homogeneous space Minimal curves C*-algebra Projective space Espacio homogéneo Curvas mínimas C*-álgebra Espacio proyectivoEspaço homogêneo Curvas mínimas Álgebra C* Espaço projetivo |
topic |
Homogeneous space Minimal curves C*-algebra Projective space Espacio homogéneo Curvas mínimas C*-álgebra Espacio proyectivoEspaço homogêneo Curvas mínimas Álgebra C* Espaço projetivo |
dc.description.none.fl_txt_mv |
Fil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. LetAbe a unitalC*-algebra with a faithful state?. We study the geometry of the unit sphereS?={x?A:?(x*x) = 1}and the projective spaceP?=S?/T. These spaces are shown to be smooth manifoldsand homogeneous spaces of the groupU?(A)of isomorphisms acting inAwhich preserve the inner productinduced by?, which is a smooth Banach-Lie group. An important role is played by the theory of operators inBanach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric inP?, and provethe existence of minimal geodesics, both with given initial data, and given endpoints. |
description |
Fil: Antúnez, Andrea Carolina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2025-01-08T16:25:51Z 2025-01-08T16:25:51Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Antunez, A. C. (2019). Sphere and projective space of a C*-algebra with a faithful state. Demonstratio Mathematica, 52(1), 410-427. 2391-4661 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1857 |
identifier_str_mv |
Antunez, A. C. (2019). Sphere and projective space of a C*-algebra with a faithful state. Demonstratio Mathematica, 52(1), 410-427. 2391-4661 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1857 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1515/dema-2019-0036 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
Demonstratio Mathematica. 2019; 52(1): 410-427 https://www.degruyter.com/journal/key/dema/52/1/html reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1843613730395389952 |
score |
12.489739 |