Geometry of the projective unitary group of a C*-algebra
- Autores
- Andruchow, Esteban
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
C*-algebra
projective unitaries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50955
Ver los metadatos del registro completo
| id |
CONICETDig_425123c2dfb7d4cf3728965387e2526b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50955 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Geometry of the projective unitary group of a C*-algebraAndruchow, EstebanC*-algebraprojective unitarieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaUnión Matemática Argentina2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50955Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-3290041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.inmabb.criba.edu.ar/revuma/pdf/v58n2/v58n2a11.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:38:33Zoai:ri.conicet.gov.ar:11336/50955instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:38:33.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Geometry of the projective unitary group of a C*-algebra |
| title |
Geometry of the projective unitary group of a C*-algebra |
| spellingShingle |
Geometry of the projective unitary group of a C*-algebra Andruchow, Esteban C*-algebra projective unitaries |
| title_short |
Geometry of the projective unitary group of a C*-algebra |
| title_full |
Geometry of the projective unitary group of a C*-algebra |
| title_fullStr |
Geometry of the projective unitary group of a C*-algebra |
| title_full_unstemmed |
Geometry of the projective unitary group of a C*-algebra |
| title_sort |
Geometry of the projective unitary group of a C*-algebra |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban |
| author_role |
author |
| dc.subject.none.fl_str_mv |
C*-algebra projective unitaries |
| topic |
C*-algebra projective unitaries |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
| description |
Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50955 Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-329 0041-6932 1669-9637 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/50955 |
| identifier_str_mv |
Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-329 0041-6932 1669-9637 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.inmabb.criba.edu.ar/revuma/pdf/v58n2/v58n2a11.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
| publisher.none.fl_str_mv |
Unión Matemática Argentina |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849872282515668992 |
| score |
13.011256 |