Geometry of the projective unitary group of a C*-algebra

Autores
Andruchow, Esteban
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
C*-algebra
projective unitaries
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50955

id CONICETDig_425123c2dfb7d4cf3728965387e2526b
oai_identifier_str oai:ri.conicet.gov.ar:11336/50955
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geometry of the projective unitary group of a C*-algebraAndruchow, EstebanC*-algebraprojective unitarieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaUnión Matemática Argentina2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50955Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-3290041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.inmabb.criba.edu.ar/revuma/pdf/v58n2/v58n2a11.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:38:33Zoai:ri.conicet.gov.ar:11336/50955instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:38:33.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geometry of the projective unitary group of a C*-algebra
title Geometry of the projective unitary group of a C*-algebra
spellingShingle Geometry of the projective unitary group of a C*-algebra
Andruchow, Esteban
C*-algebra
projective unitaries
title_short Geometry of the projective unitary group of a C*-algebra
title_full Geometry of the projective unitary group of a C*-algebra
title_fullStr Geometry of the projective unitary group of a C*-algebra
title_full_unstemmed Geometry of the projective unitary group of a C*-algebra
title_sort Geometry of the projective unitary group of a C*-algebra
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv C*-algebra
projective unitaries
topic C*-algebra
projective unitaries
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description Let A be a C∗-algebra with a faithful state ϕ. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C∞-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ϕ-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C∗-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ≥ 2), which metrizes the strong operator topology of P UA.
publishDate 2017
dc.date.none.fl_str_mv 2017-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50955
Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-329
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50955
identifier_str_mv Andruchow, Esteban; Geometry of the projective unitary group of a C*-algebra; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 58; 2; 6-2017; 319-329
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.inmabb.criba.edu.ar/revuma/pdf/v58n2/v58n2a11.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849872282515668992
score 13.011256