Analysis of non-Markovian repairable fault trees through rare event simulation

Autores
Budde, Carlos E.; D'Argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: D'Argenio, Pedro Ruben. Saarland University. Department of Computer Science; Germany.
Fil: Budde, Carlos E. University of Trento. Department of Information Engineering and Computer; Italy.
Fil: Monti, Raúl Enrique. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. Radboud University. Department of Software Science; The Netherlands.
Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.
This work was partially supported by the EU Grant Agreement 101008233 (MISSION), ANPCyT PICT-2017-3894 RAFTSys), and SeCyT project 33620180100354CB (ARES). Funded also by the EU Grant Agreement 101067199 (ProSVED).
info:eu-repo/semantics/publishedVersion
Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: D'Argenio, Pedro Ruben. Saarland University. Department of Computer Science; Germany.
Fil: Budde, Carlos E. University of Trento. Department of Information Engineering and Computer; Italy.
Fil: Monti, Raúl Enrique. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. Radboud University. Department of Software Science; The Netherlands.
Fuente
ISSN 1433-2779
eISSN 1433-2787
Materia
Fault tree analysis
Rare event simulation
Statistical model checking
System reliability
Análisis de árboles de fallas
Simulación de eventos raros
Confiabilidad de sistemas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/546760

id RDUUNC_7ccde27efdb0e71b1992f7d5aa43c4d5
oai_identifier_str oai:rdu.unc.edu.ar:11086/546760
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Analysis of non-Markovian repairable fault trees through rare event simulationBudde, Carlos E.D'Argenio, Pedro RubenMonti, Raúl EnriqueStoelinga, MariëlleFault tree analysisRare event simulationStatistical model checkingSystem reliabilityAnálisis de árboles de fallasSimulación de eventos rarosConfiabilidad de sistemasFil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: D'Argenio, Pedro Ruben. Saarland University. Department of Computer Science; Germany.Fil: Budde, Carlos E. University of Trento. Department of Information Engineering and Computer; Italy.Fil: Monti, Raúl Enrique. University of Twente; The Netherlands.Fil: Stoelinga, Mariëlle. University of Twente; The Netherlands.Fil: Stoelinga, Mariëlle. Radboud University. Department of Software Science; The Netherlands.Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.This work was partially supported by the EU Grant Agreement 101008233 (MISSION), ANPCyT PICT-2017-3894 RAFTSys), and SeCyT project 33620180100354CB (ARES). Funded also by the EU Grant Agreement 101067199 (ProSVED).info:eu-repo/semantics/publishedVersionFil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: D'Argenio, Pedro Ruben. Saarland University. Department of Computer Science; Germany.Fil: Budde, Carlos E. University of Trento. Department of Information Engineering and Computer; Italy.Fil: Monti, Raúl Enrique. University of Twente; The Netherlands.Fil: Stoelinga, Mariëlle. University of Twente; The Netherlands.Fil: Stoelinga, Mariëlle. Radboud University. Department of Software Science; The Netherlands.0000-0002-8528-92150000-0001-8807-15480000-0002-6964-14260000-0001-6793-81652022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/11086/546760https://doi.org/10.1007/s10009-022-00675-xISSN 1433-2779eISSN 1433-2787reponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCenginfo:eu-repo/semantics/openAccess2025-09-29T13:41:25Zoai:rdu.unc.edu.ar:11086/546760Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:41:25.559Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Analysis of non-Markovian repairable fault trees through rare event simulation
title Analysis of non-Markovian repairable fault trees through rare event simulation
spellingShingle Analysis of non-Markovian repairable fault trees through rare event simulation
Budde, Carlos E.
Fault tree analysis
Rare event simulation
Statistical model checking
System reliability
Análisis de árboles de fallas
Simulación de eventos raros
Confiabilidad de sistemas
title_short Analysis of non-Markovian repairable fault trees through rare event simulation
title_full Analysis of non-Markovian repairable fault trees through rare event simulation
title_fullStr Analysis of non-Markovian repairable fault trees through rare event simulation
title_full_unstemmed Analysis of non-Markovian repairable fault trees through rare event simulation
title_sort Analysis of non-Markovian repairable fault trees through rare event simulation
dc.creator.none.fl_str_mv Budde, Carlos E.
D'Argenio, Pedro Ruben
Monti, Raúl Enrique
Stoelinga, Mariëlle
author Budde, Carlos E.
author_facet Budde, Carlos E.
D'Argenio, Pedro Ruben
Monti, Raúl Enrique
Stoelinga, Mariëlle
author_role author
author2 D'Argenio, Pedro Ruben
Monti, Raúl Enrique
Stoelinga, Mariëlle
author2_role author
author
author
dc.contributor.none.fl_str_mv 0000-0002-8528-9215
0000-0001-8807-1548
0000-0002-6964-1426
0000-0001-6793-8165
dc.subject.none.fl_str_mv Fault tree analysis
Rare event simulation
Statistical model checking
System reliability
Análisis de árboles de fallas
Simulación de eventos raros
Confiabilidad de sistemas
topic Fault tree analysis
Rare event simulation
Statistical model checking
System reliability
Análisis de árboles de fallas
Simulación de eventos raros
Confiabilidad de sistemas
dc.description.none.fl_txt_mv Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: D'Argenio, Pedro Ruben. Saarland University. Department of Computer Science; Germany.
Fil: Budde, Carlos E. University of Trento. Department of Information Engineering and Computer; Italy.
Fil: Monti, Raúl Enrique. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. Radboud University. Department of Software Science; The Netherlands.
Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.
This work was partially supported by the EU Grant Agreement 101008233 (MISSION), ANPCyT PICT-2017-3894 RAFTSys), and SeCyT project 33620180100354CB (ARES). Funded also by the EU Grant Agreement 101067199 (ProSVED).
info:eu-repo/semantics/publishedVersion
Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: D'Argenio, Pedro Ruben. Saarland University. Department of Computer Science; Germany.
Fil: Budde, Carlos E. University of Trento. Department of Information Engineering and Computer; Italy.
Fil: Monti, Raúl Enrique. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. University of Twente; The Netherlands.
Fil: Stoelinga, Mariëlle. Radboud University. Department of Software Science; The Netherlands.
description Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
status_str publishedVersion
format article
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/546760
https://doi.org/10.1007/s10009-022-00675-x
url http://hdl.handle.net/11086/546760
https://doi.org/10.1007/s10009-022-00675-x
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv ISSN 1433-2779
eISSN 1433-2787
reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1844618901276590080
score 13.070432