Analysis of non-Markovian repairable fault trees through rare event simulation

Autores
Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.
Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universita degli Studi di Trento; Italia
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Saarland; Alemania. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Monti, Raúl Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universiteit Twente (ut);
Fil: Stoelinga, Mariëlle. Universiteit Twente (ut); . Radboud Universiteit Nijmegen; Países Bajos
Materia
FAULT TREE ANALYSIS
RARE EVENT SIMULATION
STATISTICAL MODEL CHECKING
SYSTEM RELIABILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/200874

id CONICETDig_c8b61a1295e70b018bcb96a19b360a01
oai_identifier_str oai:ri.conicet.gov.ar:11336/200874
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analysis of non-Markovian repairable fault trees through rare event simulationBudde, Carlos EstebanD'argenio, Pedro RubenMonti, Raúl EnriqueStoelinga, MariëlleFAULT TREE ANALYSISRARE EVENT SIMULATIONSTATISTICAL MODEL CHECKINGSYSTEM RELIABILITYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universita degli Studi di Trento; ItaliaFil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Saarland; Alemania. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Monti, Raúl Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universiteit Twente (ut);Fil: Stoelinga, Mariëlle. Universiteit Twente (ut); . Radboud Universiteit Nijmegen; Países BajosSpringer Science and Business Media Deutschland GmbH2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200874Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle; Analysis of non-Markovian repairable fault trees through rare event simulation; Springer Science and Business Media Deutschland GmbH; International Journal on Software Tools for Technology Transfer; 24; 5; 10-2022; 821-8411433-27791433-2787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10009-022-00675-xinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10009-022-00675-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:32Zoai:ri.conicet.gov.ar:11336/200874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:32.457CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analysis of non-Markovian repairable fault trees through rare event simulation
title Analysis of non-Markovian repairable fault trees through rare event simulation
spellingShingle Analysis of non-Markovian repairable fault trees through rare event simulation
Budde, Carlos Esteban
FAULT TREE ANALYSIS
RARE EVENT SIMULATION
STATISTICAL MODEL CHECKING
SYSTEM RELIABILITY
title_short Analysis of non-Markovian repairable fault trees through rare event simulation
title_full Analysis of non-Markovian repairable fault trees through rare event simulation
title_fullStr Analysis of non-Markovian repairable fault trees through rare event simulation
title_full_unstemmed Analysis of non-Markovian repairable fault trees through rare event simulation
title_sort Analysis of non-Markovian repairable fault trees through rare event simulation
dc.creator.none.fl_str_mv Budde, Carlos Esteban
D'argenio, Pedro Ruben
Monti, Raúl Enrique
Stoelinga, Mariëlle
author Budde, Carlos Esteban
author_facet Budde, Carlos Esteban
D'argenio, Pedro Ruben
Monti, Raúl Enrique
Stoelinga, Mariëlle
author_role author
author2 D'argenio, Pedro Ruben
Monti, Raúl Enrique
Stoelinga, Mariëlle
author2_role author
author
author
dc.subject.none.fl_str_mv FAULT TREE ANALYSIS
RARE EVENT SIMULATION
STATISTICAL MODEL CHECKING
SYSTEM RELIABILITY
topic FAULT TREE ANALYSIS
RARE EVENT SIMULATION
STATISTICAL MODEL CHECKING
SYSTEM RELIABILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.
Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universita degli Studi di Trento; Italia
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Saarland; Alemania. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Monti, Raúl Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universiteit Twente (ut);
Fil: Stoelinga, Mariëlle. Universiteit Twente (ut); . Radboud Universiteit Nijmegen; Países Bajos
description Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/200874
Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle; Analysis of non-Markovian repairable fault trees through rare event simulation; Springer Science and Business Media Deutschland GmbH; International Journal on Software Tools for Technology Transfer; 24; 5; 10-2022; 821-841
1433-2779
1433-2787
CONICET Digital
CONICET
url http://hdl.handle.net/11336/200874
identifier_str_mv Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle; Analysis of non-Markovian repairable fault trees through rare event simulation; Springer Science and Business Media Deutschland GmbH; International Journal on Software Tools for Technology Transfer; 24; 5; 10-2022; 821-841
1433-2779
1433-2787
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10009-022-00675-x
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10009-022-00675-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844612992918880256
score 13.070432