Analysis of non-Markovian repairable fault trees through rare event simulation
- Autores
- Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.
Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universita degli Studi di Trento; Italia
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Saarland; Alemania. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Monti, Raúl Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universiteit Twente (ut);
Fil: Stoelinga, Mariëlle. Universiteit Twente (ut); . Radboud Universiteit Nijmegen; Países Bajos - Materia
-
FAULT TREE ANALYSIS
RARE EVENT SIMULATION
STATISTICAL MODEL CHECKING
SYSTEM RELIABILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/200874
Ver los metadatos del registro completo
id |
CONICETDig_c8b61a1295e70b018bcb96a19b360a01 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/200874 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of non-Markovian repairable fault trees through rare event simulationBudde, Carlos EstebanD'argenio, Pedro RubenMonti, Raúl EnriqueStoelinga, MariëlleFAULT TREE ANALYSISRARE EVENT SIMULATIONSTATISTICAL MODEL CHECKINGSYSTEM RELIABILITYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies.Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universita degli Studi di Trento; ItaliaFil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Saarland; Alemania. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Monti, Raúl Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universiteit Twente (ut);Fil: Stoelinga, Mariëlle. Universiteit Twente (ut); . Radboud Universiteit Nijmegen; Países BajosSpringer Science and Business Media Deutschland GmbH2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200874Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle; Analysis of non-Markovian repairable fault trees through rare event simulation; Springer Science and Business Media Deutschland GmbH; International Journal on Software Tools for Technology Transfer; 24; 5; 10-2022; 821-8411433-27791433-2787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10009-022-00675-xinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10009-022-00675-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:32Zoai:ri.conicet.gov.ar:11336/200874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:32.457CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of non-Markovian repairable fault trees through rare event simulation |
title |
Analysis of non-Markovian repairable fault trees through rare event simulation |
spellingShingle |
Analysis of non-Markovian repairable fault trees through rare event simulation Budde, Carlos Esteban FAULT TREE ANALYSIS RARE EVENT SIMULATION STATISTICAL MODEL CHECKING SYSTEM RELIABILITY |
title_short |
Analysis of non-Markovian repairable fault trees through rare event simulation |
title_full |
Analysis of non-Markovian repairable fault trees through rare event simulation |
title_fullStr |
Analysis of non-Markovian repairable fault trees through rare event simulation |
title_full_unstemmed |
Analysis of non-Markovian repairable fault trees through rare event simulation |
title_sort |
Analysis of non-Markovian repairable fault trees through rare event simulation |
dc.creator.none.fl_str_mv |
Budde, Carlos Esteban D'argenio, Pedro Ruben Monti, Raúl Enrique Stoelinga, Mariëlle |
author |
Budde, Carlos Esteban |
author_facet |
Budde, Carlos Esteban D'argenio, Pedro Ruben Monti, Raúl Enrique Stoelinga, Mariëlle |
author_role |
author |
author2 |
D'argenio, Pedro Ruben Monti, Raúl Enrique Stoelinga, Mariëlle |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FAULT TREE ANALYSIS RARE EVENT SIMULATION STATISTICAL MODEL CHECKING SYSTEM RELIABILITY |
topic |
FAULT TREE ANALYSIS RARE EVENT SIMULATION STATISTICAL MODEL CHECKING SYSTEM RELIABILITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies. Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universita degli Studi di Trento; Italia Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Saarland; Alemania. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Monti, Raúl Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universiteit Twente (ut); Fil: Stoelinga, Mariëlle. Universiteit Twente (ut); . Radboud Universiteit Nijmegen; Países Bajos |
description |
Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs, more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert, our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we also present improvements. We finally show the efficiency of our approach in several case studies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/200874 Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle; Analysis of non-Markovian repairable fault trees through rare event simulation; Springer Science and Business Media Deutschland GmbH; International Journal on Software Tools for Technology Transfer; 24; 5; 10-2022; 821-841 1433-2779 1433-2787 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/200874 |
identifier_str_mv |
Budde, Carlos Esteban; D'argenio, Pedro Ruben; Monti, Raúl Enrique; Stoelinga, Mariëlle; Analysis of non-Markovian repairable fault trees through rare event simulation; Springer Science and Business Media Deutschland GmbH; International Journal on Software Tools for Technology Transfer; 24; 5; 10-2022; 821-841 1433-2779 1433-2787 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10009-022-00675-x info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10009-022-00675-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612992918880256 |
score |
13.070432 |