Rare event simulation with fully automated importance splitting
- Autores
- Budde, Carlos Esteban; D'argenio, Pedro Ruben; Hermanns, Holger
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Probabilistic model checking is a powerful tool for analysing probabilistic systems but it can only be efficiently applied to Markov models. Monte Carlo simulation provides an alternative for the generality of stochastic processes, but becomes infeasible if the value to estimate depends on the occurrence of rare events. To combat this problem, intelligent simulation strategies exist to lower the estimation variance and hence reduce the simulation time. Importance splitting is one such technique, but requires a guiding function typically defined in an ad hoc fashion by an expert in the field. We present an automatic derivation of the importance function from the model description. A prototypical tool was developed and tested on several Markov models, compared to analytically and numerically calculated results and to results of typical ad hoc importance functions, showing the feasibility and efficiency of this approach. The technique is easily adapted to general models like GSMPs.
Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Hermanns, Holger. Universitat Saarland; Alemania - Materia
-
Rare Event Simulation
Importance Splitting
Restart
Statistical Model Checking - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69334
Ver los metadatos del registro completo
id |
CONICETDig_75c82497cd012e0f07c2fa2c5b13fb31 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69334 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rare event simulation with fully automated importance splittingBudde, Carlos EstebanD'argenio, Pedro RubenHermanns, HolgerRare Event SimulationImportance SplittingRestartStatistical Model Checkinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Probabilistic model checking is a powerful tool for analysing probabilistic systems but it can only be efficiently applied to Markov models. Monte Carlo simulation provides an alternative for the generality of stochastic processes, but becomes infeasible if the value to estimate depends on the occurrence of rare events. To combat this problem, intelligent simulation strategies exist to lower the estimation variance and hence reduce the simulation time. Importance splitting is one such technique, but requires a guiding function typically defined in an ad hoc fashion by an expert in the field. We present an automatic derivation of the importance function from the model description. A prototypical tool was developed and tested on several Markov models, compared to analytically and numerically calculated results and to results of typical ad hoc importance functions, showing the feasibility and efficiency of this approach. The technique is easily adapted to general models like GSMPs.Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Hermanns, Holger. Universitat Saarland; AlemaniaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69334Budde, Carlos Esteban; D'argenio, Pedro Ruben; Hermanns, Holger; Rare event simulation with fully automated importance splitting; Springer; Lecture Notes in Computer Science; 9272; 8-2015; 275-2900302-9743CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-23267-6_18info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-23267-6_18info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:57Zoai:ri.conicet.gov.ar:11336/69334instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:57.329CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rare event simulation with fully automated importance splitting |
title |
Rare event simulation with fully automated importance splitting |
spellingShingle |
Rare event simulation with fully automated importance splitting Budde, Carlos Esteban Rare Event Simulation Importance Splitting Restart Statistical Model Checking |
title_short |
Rare event simulation with fully automated importance splitting |
title_full |
Rare event simulation with fully automated importance splitting |
title_fullStr |
Rare event simulation with fully automated importance splitting |
title_full_unstemmed |
Rare event simulation with fully automated importance splitting |
title_sort |
Rare event simulation with fully automated importance splitting |
dc.creator.none.fl_str_mv |
Budde, Carlos Esteban D'argenio, Pedro Ruben Hermanns, Holger |
author |
Budde, Carlos Esteban |
author_facet |
Budde, Carlos Esteban D'argenio, Pedro Ruben Hermanns, Holger |
author_role |
author |
author2 |
D'argenio, Pedro Ruben Hermanns, Holger |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Rare Event Simulation Importance Splitting Restart Statistical Model Checking |
topic |
Rare Event Simulation Importance Splitting Restart Statistical Model Checking |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Probabilistic model checking is a powerful tool for analysing probabilistic systems but it can only be efficiently applied to Markov models. Monte Carlo simulation provides an alternative for the generality of stochastic processes, but becomes infeasible if the value to estimate depends on the occurrence of rare events. To combat this problem, intelligent simulation strategies exist to lower the estimation variance and hence reduce the simulation time. Importance splitting is one such technique, but requires a guiding function typically defined in an ad hoc fashion by an expert in the field. We present an automatic derivation of the importance function from the model description. A prototypical tool was developed and tested on several Markov models, compared to analytically and numerically calculated results and to results of typical ad hoc importance functions, showing the feasibility and efficiency of this approach. The technique is easily adapted to general models like GSMPs. Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Hermanns, Holger. Universitat Saarland; Alemania |
description |
Probabilistic model checking is a powerful tool for analysing probabilistic systems but it can only be efficiently applied to Markov models. Monte Carlo simulation provides an alternative for the generality of stochastic processes, but becomes infeasible if the value to estimate depends on the occurrence of rare events. To combat this problem, intelligent simulation strategies exist to lower the estimation variance and hence reduce the simulation time. Importance splitting is one such technique, but requires a guiding function typically defined in an ad hoc fashion by an expert in the field. We present an automatic derivation of the importance function from the model description. A prototypical tool was developed and tested on several Markov models, compared to analytically and numerically calculated results and to results of typical ad hoc importance functions, showing the feasibility and efficiency of this approach. The technique is easily adapted to general models like GSMPs. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69334 Budde, Carlos Esteban; D'argenio, Pedro Ruben; Hermanns, Holger; Rare event simulation with fully automated importance splitting; Springer; Lecture Notes in Computer Science; 9272; 8-2015; 275-290 0302-9743 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69334 |
identifier_str_mv |
Budde, Carlos Esteban; D'argenio, Pedro Ruben; Hermanns, Holger; Rare event simulation with fully automated importance splitting; Springer; Lecture Notes in Computer Science; 9272; 8-2015; 275-290 0302-9743 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-23267-6_18 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-23267-6_18 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613085169451008 |
score |
13.070432 |