Automated compositional importance splitting

Autores
Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.
Fil: Budde, Carlos E.. Universiteit Twente; Países Bajos
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos
Materia
RARE EVENT SIMULATION
IMPORTANCE SPLITTING
IMPORTANCE FUNCTION
STATISTICAL MODEL CHECKING
TRANSIENT ANALYSIS
STEADY-STATE ANALYSIS
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112096

id CONICETDig_8cc49213564c2afbfa129f1159b625cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/112096
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automated compositional importance splittingBudde, Carlos E.D'argenio, Pedro RubenHartmanns, ArndRARE EVENT SIMULATIONIMPORTANCE SPLITTINGIMPORTANCE FUNCTIONSTATISTICAL MODEL CHECKINGTRANSIENT ANALYSISSTEADY-STATE ANALYSIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.Fil: Budde, Carlos E.. Universiteit Twente; Países BajosFil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hartmanns, Arnd. Universiteit Twente; Países BajosElsevier Science2019-04info:eu-repo/date/embargoEnd/2023-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112096Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-1080167-6423CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167642318301503info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scico.2019.01.006info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:54Zoai:ri.conicet.gov.ar:11336/112096instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:55.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automated compositional importance splitting
title Automated compositional importance splitting
spellingShingle Automated compositional importance splitting
Budde, Carlos E.
RARE EVENT SIMULATION
IMPORTANCE SPLITTING
IMPORTANCE FUNCTION
STATISTICAL MODEL CHECKING
TRANSIENT ANALYSIS
STEADY-STATE ANALYSIS
title_short Automated compositional importance splitting
title_full Automated compositional importance splitting
title_fullStr Automated compositional importance splitting
title_full_unstemmed Automated compositional importance splitting
title_sort Automated compositional importance splitting
dc.creator.none.fl_str_mv Budde, Carlos E.
D'argenio, Pedro Ruben
Hartmanns, Arnd
author Budde, Carlos E.
author_facet Budde, Carlos E.
D'argenio, Pedro Ruben
Hartmanns, Arnd
author_role author
author2 D'argenio, Pedro Ruben
Hartmanns, Arnd
author2_role author
author
dc.subject.none.fl_str_mv RARE EVENT SIMULATION
IMPORTANCE SPLITTING
IMPORTANCE FUNCTION
STATISTICAL MODEL CHECKING
TRANSIENT ANALYSIS
STEADY-STATE ANALYSIS
topic RARE EVENT SIMULATION
IMPORTANCE SPLITTING
IMPORTANCE FUNCTION
STATISTICAL MODEL CHECKING
TRANSIENT ANALYSIS
STEADY-STATE ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.
Fil: Budde, Carlos E.. Universiteit Twente; Países Bajos
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos
description In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
info:eu-repo/date/embargoEnd/2023-04-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112096
Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-108
0167-6423
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112096
identifier_str_mv Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-108
0167-6423
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167642318301503
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scico.2019.01.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613083365900288
score 13.070432