Automated compositional importance splitting
- Autores
- Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.
Fil: Budde, Carlos E.. Universiteit Twente; Países Bajos
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos - Materia
-
RARE EVENT SIMULATION
IMPORTANCE SPLITTING
IMPORTANCE FUNCTION
STATISTICAL MODEL CHECKING
TRANSIENT ANALYSIS
STEADY-STATE ANALYSIS - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112096
Ver los metadatos del registro completo
id |
CONICETDig_8cc49213564c2afbfa129f1159b625cb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112096 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automated compositional importance splittingBudde, Carlos E.D'argenio, Pedro RubenHartmanns, ArndRARE EVENT SIMULATIONIMPORTANCE SPLITTINGIMPORTANCE FUNCTIONSTATISTICAL MODEL CHECKINGTRANSIENT ANALYSISSTEADY-STATE ANALYSIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.Fil: Budde, Carlos E.. Universiteit Twente; Países BajosFil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hartmanns, Arnd. Universiteit Twente; Países BajosElsevier Science2019-04info:eu-repo/date/embargoEnd/2023-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112096Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-1080167-6423CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167642318301503info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scico.2019.01.006info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:54Zoai:ri.conicet.gov.ar:11336/112096instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:55.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automated compositional importance splitting |
title |
Automated compositional importance splitting |
spellingShingle |
Automated compositional importance splitting Budde, Carlos E. RARE EVENT SIMULATION IMPORTANCE SPLITTING IMPORTANCE FUNCTION STATISTICAL MODEL CHECKING TRANSIENT ANALYSIS STEADY-STATE ANALYSIS |
title_short |
Automated compositional importance splitting |
title_full |
Automated compositional importance splitting |
title_fullStr |
Automated compositional importance splitting |
title_full_unstemmed |
Automated compositional importance splitting |
title_sort |
Automated compositional importance splitting |
dc.creator.none.fl_str_mv |
Budde, Carlos E. D'argenio, Pedro Ruben Hartmanns, Arnd |
author |
Budde, Carlos E. |
author_facet |
Budde, Carlos E. D'argenio, Pedro Ruben Hartmanns, Arnd |
author_role |
author |
author2 |
D'argenio, Pedro Ruben Hartmanns, Arnd |
author2_role |
author author |
dc.subject.none.fl_str_mv |
RARE EVENT SIMULATION IMPORTANCE SPLITTING IMPORTANCE FUNCTION STATISTICAL MODEL CHECKING TRANSIENT ANALYSIS STEADY-STATE ANALYSIS |
topic |
RARE EVENT SIMULATION IMPORTANCE SPLITTING IMPORTANCE FUNCTION STATISTICAL MODEL CHECKING TRANSIENT ANALYSIS STEADY-STATE ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator. Fil: Budde, Carlos E.. Universiteit Twente; Países Bajos Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos |
description |
In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 info:eu-repo/date/embargoEnd/2023-04-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112096 Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-108 0167-6423 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112096 |
identifier_str_mv |
Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-108 0167-6423 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167642318301503 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scico.2019.01.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613083365900288 |
score |
13.070432 |