Better automated importance splitting for transient rare events
- Autores
- Budde, Carlos Ernesto; D'argenio, Pedro Ruben; Hartmanns, Arnd
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available.
Fil: Budde, Carlos Ernesto. Universiteit Twente; Países Bajos. Universidad Nacional de Córdoba; Argentina
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos - Materia
-
Rare Event Simulation
Importance Splitting
Transient Analysis
Expected Success - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72324
Ver los metadatos del registro completo
id |
CONICETDig_d02eb6f3a1191bdf3415016795a56dcd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72324 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Better automated importance splitting for transient rare eventsBudde, Carlos ErnestoD'argenio, Pedro RubenHartmanns, ArndRare Event SimulationImportance SplittingTransient AnalysisExpected Successhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available.Fil: Budde, Carlos Ernesto. Universiteit Twente; Países Bajos. Universidad Nacional de Córdoba; ArgentinaFil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Hartmanns, Arnd. Universiteit Twente; Países BajosSpringer Verlag Berlín2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72324Budde, Carlos Ernesto; D'argenio, Pedro Ruben; Hartmanns, Arnd; Better automated importance splitting for transient rare events; Springer Verlag Berlín; Lecture Notes in Computer Science; 10606 LNCS; 10-2017; 42-580302-9743CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-69483-2_3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-69483-2_3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:38Zoai:ri.conicet.gov.ar:11336/72324instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:39.063CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Better automated importance splitting for transient rare events |
title |
Better automated importance splitting for transient rare events |
spellingShingle |
Better automated importance splitting for transient rare events Budde, Carlos Ernesto Rare Event Simulation Importance Splitting Transient Analysis Expected Success |
title_short |
Better automated importance splitting for transient rare events |
title_full |
Better automated importance splitting for transient rare events |
title_fullStr |
Better automated importance splitting for transient rare events |
title_full_unstemmed |
Better automated importance splitting for transient rare events |
title_sort |
Better automated importance splitting for transient rare events |
dc.creator.none.fl_str_mv |
Budde, Carlos Ernesto D'argenio, Pedro Ruben Hartmanns, Arnd |
author |
Budde, Carlos Ernesto |
author_facet |
Budde, Carlos Ernesto D'argenio, Pedro Ruben Hartmanns, Arnd |
author_role |
author |
author2 |
D'argenio, Pedro Ruben Hartmanns, Arnd |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Rare Event Simulation Importance Splitting Transient Analysis Expected Success |
topic |
Rare Event Simulation Importance Splitting Transient Analysis Expected Success |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available. Fil: Budde, Carlos Ernesto. Universiteit Twente; Países Bajos. Universidad Nacional de Córdoba; Argentina Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos |
description |
Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72324 Budde, Carlos Ernesto; D'argenio, Pedro Ruben; Hartmanns, Arnd; Better automated importance splitting for transient rare events; Springer Verlag Berlín; Lecture Notes in Computer Science; 10606 LNCS; 10-2017; 42-58 0302-9743 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72324 |
identifier_str_mv |
Budde, Carlos Ernesto; D'argenio, Pedro Ruben; Hartmanns, Arnd; Better automated importance splitting for transient rare events; Springer Verlag Berlín; Lecture Notes in Computer Science; 10606 LNCS; 10-2017; 42-58 0302-9743 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-69483-2_3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-69483-2_3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag Berlín |
publisher.none.fl_str_mv |
Springer Verlag Berlín |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613535564300288 |
score |
13.070432 |