Rare event simulation with fully automated Importance splitting
- Autores
- Budde, Carlos Esteban; D'Argenio, Pedro Ruben; Hermanns, Holger
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Hermanns, Holger. Universität des Saarlandes. Fakultät für Mathematik und Informatik; Alemania.
Probabilistic model checking is a powerful tool for analysing probabilistic systems but it can only be efficiently applied to Markov models. Monte Carlo simulation provides an alternative for the generality of stochastic processes, but becomes infeasible if the value to estimate depends on the occurrence of rare events. To combat this problem, intelligent simulation strategies exist to lower the estimation variance and hence reduce the simulation time. Importance splitting is one such technique, but requires a guiding function typically defined in an ad hoc fashion by an expert in the field. We present an automatic derivation of the importance function from the model description. A prototypical tool was developed and tested on several Markov models, compared to analytically and numerically calculated results and to results of typical ad hoc importance functions, showing the feasibility and efficiency of this approach. The technique is easily adapted to general models like GSMPs.
publishedVersion
Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Hermanns, Holger. Universität des Saarlandes. Fakultät für Mathematik und Informatik; Alemania.
Ciencias de la Computación - Fuente
- ISSN: 0302-9743
- Materia
-
Rare event
Goal state
Importance sampling
Importance function
Tandem queue - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/27279
Ver los metadatos del registro completo
id |
RDUUNC_a00bdbb2b35afb58aa2e003ec0df5476 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/27279 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Rare event simulation with fully automated Importance splittingBudde, Carlos EstebanD'Argenio, Pedro RubenHermanns, HolgerRare eventGoal stateImportance samplingImportance functionTandem queueFil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Hermanns, Holger. Universität des Saarlandes. Fakultät für Mathematik und Informatik; Alemania.Probabilistic model checking is a powerful tool for analysing probabilistic systems but it can only be efficiently applied to Markov models. Monte Carlo simulation provides an alternative for the generality of stochastic processes, but becomes infeasible if the value to estimate depends on the occurrence of rare events. To combat this problem, intelligent simulation strategies exist to lower the estimation variance and hence reduce the simulation time. Importance splitting is one such technique, but requires a guiding function typically defined in an ad hoc fashion by an expert in the field. We present an automatic derivation of the importance function from the model description. A prototypical tool was developed and tested on several Markov models, compared to analytically and numerically calculated results and to results of typical ad hoc importance functions, showing the feasibility and efficiency of this approach. The technique is easily adapted to general models like GSMPs.publishedVersionFil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Hermanns, Holger. Universität des Saarlandes. Fakultät für Mathematik und Informatik; Alemania.Ciencias de la Computación2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/11086/27279https://doi.org/10.1007/978-3-319-23267-6_18https://doi.org/10.1007/978-3-319-23267-6_18ISSN: 0302-9743reponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCenginfo:eu-repo/semantics/openAccess2025-09-29T13:42:33Zoai:rdu.unc.edu.ar:11086/27279Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:42:34.017Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Rare event simulation with fully automated Importance splitting |
title |
Rare event simulation with fully automated Importance splitting |
spellingShingle |
Rare event simulation with fully automated Importance splitting Budde, Carlos Esteban Rare event Goal state Importance sampling Importance function Tandem queue |
title_short |
Rare event simulation with fully automated Importance splitting |
title_full |
Rare event simulation with fully automated Importance splitting |
title_fullStr |
Rare event simulation with fully automated Importance splitting |
title_full_unstemmed |
Rare event simulation with fully automated Importance splitting |
title_sort |
Rare event simulation with fully automated Importance splitting |
dc.creator.none.fl_str_mv |
Budde, Carlos Esteban D'Argenio, Pedro Ruben Hermanns, Holger |
author |
Budde, Carlos Esteban |
author_facet |
Budde, Carlos Esteban D'Argenio, Pedro Ruben Hermanns, Holger |
author_role |
author |
author2 |
D'Argenio, Pedro Ruben Hermanns, Holger |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Rare event Goal state Importance sampling Importance function Tandem queue |
topic |
Rare event Goal state Importance sampling Importance function Tandem queue |
dc.description.none.fl_txt_mv |
Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Hermanns, Holger. Universität des Saarlandes. Fakultät für Mathematik und Informatik; Alemania. Probabilistic model checking is a powerful tool for analysing probabilistic systems but it can only be efficiently applied to Markov models. Monte Carlo simulation provides an alternative for the generality of stochastic processes, but becomes infeasible if the value to estimate depends on the occurrence of rare events. To combat this problem, intelligent simulation strategies exist to lower the estimation variance and hence reduce the simulation time. Importance splitting is one such technique, but requires a guiding function typically defined in an ad hoc fashion by an expert in the field. We present an automatic derivation of the importance function from the model description. A prototypical tool was developed and tested on several Markov models, compared to analytically and numerically calculated results and to results of typical ad hoc importance functions, showing the feasibility and efficiency of this approach. The technique is easily adapted to general models like GSMPs. publishedVersion Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Budde, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: D'Argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: D'Argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Hermanns, Holger. Universität des Saarlandes. Fakultät für Mathematik und Informatik; Alemania. Ciencias de la Computación |
description |
Fil: Budde, Carlos Esteban. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/27279 https://doi.org/10.1007/978-3-319-23267-6_18 https://doi.org/10.1007/978-3-319-23267-6_18 |
url |
http://hdl.handle.net/11086/27279 https://doi.org/10.1007/978-3-319-23267-6_18 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
ISSN: 0302-9743 reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618930375622656 |
score |
13.070432 |