On the convergence of random polynomials and multilinear forms

Autores
Carando, Daniel Germán; Dimant, Veronica Isabel; Pinasco, Damian
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider different kinds of convergence of homogeneous polynomials and multilinear forms in random variables. We show that for a variety of complex random variables, the almost sure convergence of the polynomial is equivalent to that of the multilinear form, and to the square summability of the coefficients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables. All these results have no analogues in the real case. Moreover, we study the Lp-convergence of random polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also consider convergence on "full subspaces" in the sense of Sjögren, both for real and complex random variables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link with the theory of homogeneous polynomials on Banach spaces.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Torcuato Di Tella; Argentina
Materia
Multilinear Forms in Random Variables
Polynomial Khintchine Inequalities
Polynomials in Random Variables
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68456

id CONICETDig_ff0fdcf3b4f718a8f72275d9dcfe5b1d
oai_identifier_str oai:ri.conicet.gov.ar:11336/68456
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the convergence of random polynomials and multilinear formsCarando, Daniel GermánDimant, Veronica IsabelPinasco, DamianMultilinear Forms in Random VariablesPolynomial Khintchine InequalitiesPolynomials in Random Variableshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider different kinds of convergence of homogeneous polynomials and multilinear forms in random variables. We show that for a variety of complex random variables, the almost sure convergence of the polynomial is equivalent to that of the multilinear form, and to the square summability of the coefficients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables. All these results have no analogues in the real case. Moreover, we study the Lp-convergence of random polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also consider convergence on "full subspaces" in the sense of Sjögren, both for real and complex random variables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link with the theory of homogeneous polynomials on Banach spaces.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaFil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Torcuato Di Tella; ArgentinaAcademic Press Inc Elsevier Science2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68456Carando, Daniel Germán; Dimant, Veronica Isabel; Pinasco, Damian; On the convergence of random polynomials and multilinear forms; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 261; 8; 10-2011; 2135-21630022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2011.06.004info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123611002229info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:33Zoai:ri.conicet.gov.ar:11336/68456instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:33.655CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the convergence of random polynomials and multilinear forms
title On the convergence of random polynomials and multilinear forms
spellingShingle On the convergence of random polynomials and multilinear forms
Carando, Daniel Germán
Multilinear Forms in Random Variables
Polynomial Khintchine Inequalities
Polynomials in Random Variables
title_short On the convergence of random polynomials and multilinear forms
title_full On the convergence of random polynomials and multilinear forms
title_fullStr On the convergence of random polynomials and multilinear forms
title_full_unstemmed On the convergence of random polynomials and multilinear forms
title_sort On the convergence of random polynomials and multilinear forms
dc.creator.none.fl_str_mv Carando, Daniel Germán
Dimant, Veronica Isabel
Pinasco, Damian
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Dimant, Veronica Isabel
Pinasco, Damian
author_role author
author2 Dimant, Veronica Isabel
Pinasco, Damian
author2_role author
author
dc.subject.none.fl_str_mv Multilinear Forms in Random Variables
Polynomial Khintchine Inequalities
Polynomials in Random Variables
topic Multilinear Forms in Random Variables
Polynomial Khintchine Inequalities
Polynomials in Random Variables
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider different kinds of convergence of homogeneous polynomials and multilinear forms in random variables. We show that for a variety of complex random variables, the almost sure convergence of the polynomial is equivalent to that of the multilinear form, and to the square summability of the coefficients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables. All these results have no analogues in the real case. Moreover, we study the Lp-convergence of random polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also consider convergence on "full subspaces" in the sense of Sjögren, both for real and complex random variables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link with the theory of homogeneous polynomials on Banach spaces.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Torcuato Di Tella; Argentina
description We consider different kinds of convergence of homogeneous polynomials and multilinear forms in random variables. We show that for a variety of complex random variables, the almost sure convergence of the polynomial is equivalent to that of the multilinear form, and to the square summability of the coefficients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables. All these results have no analogues in the real case. Moreover, we study the Lp-convergence of random polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also consider convergence on "full subspaces" in the sense of Sjögren, both for real and complex random variables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link with the theory of homogeneous polynomials on Banach spaces.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68456
Carando, Daniel Germán; Dimant, Veronica Isabel; Pinasco, Damian; On the convergence of random polynomials and multilinear forms; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 261; 8; 10-2011; 2135-2163
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68456
identifier_str_mv Carando, Daniel Germán; Dimant, Veronica Isabel; Pinasco, Damian; On the convergence of random polynomials and multilinear forms; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 261; 8; 10-2011; 2135-2163
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2011.06.004
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123611002229
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613872787390464
score 13.070432