Summation of coefficients of polynomials on lp-spaces

Autores
Dimant, Veronica Isabel; Sevilla Peris, Pablo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings.
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
Materia
Homogeneous polynomials
Multilinear mappings
Sequence spaces
Hardy-LLittlewood inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/46724

id CONICETDig_53834df519cbb92a3d5cff0d43b186f6
oai_identifier_str oai:ri.conicet.gov.ar:11336/46724
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Summation of coefficients of polynomials on lp-spacesDimant, Veronica IsabelSevilla Peris, PabloHomogeneous polynomialsMultilinear mappingsSequence spacesHardy-LLittlewood inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings.Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaUniveristat Autònoma de Barcelona2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46724Dimant, Veronica Isabel; Sevilla Peris, Pablo; Summation of coefficients of polynomials on lp-spaces; Univeristat Autònoma de Barcelona; Publicacions Matematiques; 60; 2; 7-2016; 289-3100214-1493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_60216_02info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6063info:eu-repo/semantics/altIdentifier/url/https://www.raco.cat/index.php/PublicacionsMatematiques/article/view/311009info:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_60216_02info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:05Zoai:ri.conicet.gov.ar:11336/46724instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:05.44CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Summation of coefficients of polynomials on lp-spaces
title Summation of coefficients of polynomials on lp-spaces
spellingShingle Summation of coefficients of polynomials on lp-spaces
Dimant, Veronica Isabel
Homogeneous polynomials
Multilinear mappings
Sequence spaces
Hardy-LLittlewood inequalities
title_short Summation of coefficients of polynomials on lp-spaces
title_full Summation of coefficients of polynomials on lp-spaces
title_fullStr Summation of coefficients of polynomials on lp-spaces
title_full_unstemmed Summation of coefficients of polynomials on lp-spaces
title_sort Summation of coefficients of polynomials on lp-spaces
dc.creator.none.fl_str_mv Dimant, Veronica Isabel
Sevilla Peris, Pablo
author Dimant, Veronica Isabel
author_facet Dimant, Veronica Isabel
Sevilla Peris, Pablo
author_role author
author2 Sevilla Peris, Pablo
author2_role author
dc.subject.none.fl_str_mv Homogeneous polynomials
Multilinear mappings
Sequence spaces
Hardy-LLittlewood inequalities
topic Homogeneous polynomials
Multilinear mappings
Sequence spaces
Hardy-LLittlewood inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings.
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
description We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/46724
Dimant, Veronica Isabel; Sevilla Peris, Pablo; Summation of coefficients of polynomials on lp-spaces; Univeristat Autònoma de Barcelona; Publicacions Matematiques; 60; 2; 7-2016; 289-310
0214-1493
CONICET Digital
CONICET
url http://hdl.handle.net/11336/46724
identifier_str_mv Dimant, Veronica Isabel; Sevilla Peris, Pablo; Summation of coefficients of polynomials on lp-spaces; Univeristat Autònoma de Barcelona; Publicacions Matematiques; 60; 2; 7-2016; 289-310
0214-1493
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_60216_02
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6063
info:eu-repo/semantics/altIdentifier/url/https://www.raco.cat/index.php/PublicacionsMatematiques/article/view/311009
info:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_60216_02
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Univeristat Autònoma de Barcelona
publisher.none.fl_str_mv Univeristat Autònoma de Barcelona
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613733171593216
score 13.070432