Summation of coefficients of polynomials on lp-spaces
- Autores
- Dimant, Veronica Isabel; Sevilla Peris, Pablo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings.
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
Homogeneous polynomials
Multilinear mappings
Sequence spaces
Hardy-LLittlewood inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46724
Ver los metadatos del registro completo
| id |
CONICETDig_53834df519cbb92a3d5cff0d43b186f6 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46724 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Summation of coefficients of polynomials on lp-spacesDimant, Veronica IsabelSevilla Peris, PabloHomogeneous polynomialsMultilinear mappingsSequence spacesHardy-LLittlewood inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings.Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaUniveristat Autònoma de Barcelona2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46724Dimant, Veronica Isabel; Sevilla Peris, Pablo; Summation of coefficients of polynomials on lp-spaces; Univeristat Autònoma de Barcelona; Publicacions Matematiques; 60; 2; 7-2016; 289-3100214-1493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_60216_02info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6063info:eu-repo/semantics/altIdentifier/url/https://www.raco.cat/index.php/PublicacionsMatematiques/article/view/311009info:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_60216_02info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:44:26Zoai:ri.conicet.gov.ar:11336/46724instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:44:27.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Summation of coefficients of polynomials on lp-spaces |
| title |
Summation of coefficients of polynomials on lp-spaces |
| spellingShingle |
Summation of coefficients of polynomials on lp-spaces Dimant, Veronica Isabel Homogeneous polynomials Multilinear mappings Sequence spaces Hardy-LLittlewood inequalities |
| title_short |
Summation of coefficients of polynomials on lp-spaces |
| title_full |
Summation of coefficients of polynomials on lp-spaces |
| title_fullStr |
Summation of coefficients of polynomials on lp-spaces |
| title_full_unstemmed |
Summation of coefficients of polynomials on lp-spaces |
| title_sort |
Summation of coefficients of polynomials on lp-spaces |
| dc.creator.none.fl_str_mv |
Dimant, Veronica Isabel Sevilla Peris, Pablo |
| author |
Dimant, Veronica Isabel |
| author_facet |
Dimant, Veronica Isabel Sevilla Peris, Pablo |
| author_role |
author |
| author2 |
Sevilla Peris, Pablo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Homogeneous polynomials Multilinear mappings Sequence spaces Hardy-LLittlewood inequalities |
| topic |
Homogeneous polynomials Multilinear mappings Sequence spaces Hardy-LLittlewood inequalities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings. Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España |
| description |
We investigate the summability of the coefficients of $m$-homogeneous polynomials and $m$-linear mappings defined on $\ell_{p}$-spaces. In our research we obtain resultson the summability of the coefficients of $m$-linear mappings defined on $\ell_{p_{1}} \times \cdots \times \ell_{p_{m}}$. The first results in this respect go back to Littlewood andBohnenblust and Hille (for bilinear and $m$-linear forms on $c_{0}$) and Hardy and Littlewood and Praciano-Pereira (for bilinear and $m$-linear forms on arbitrary $\ell_{p}$-spaces).Our results recover and in some case complete these old results through a general approach on vector valued $m$-linear mappings. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46724 Dimant, Veronica Isabel; Sevilla Peris, Pablo; Summation of coefficients of polynomials on lp-spaces; Univeristat Autònoma de Barcelona; Publicacions Matematiques; 60; 2; 7-2016; 289-310 0214-1493 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/46724 |
| identifier_str_mv |
Dimant, Veronica Isabel; Sevilla Peris, Pablo; Summation of coefficients of polynomials on lp-spaces; Univeristat Autònoma de Barcelona; Publicacions Matematiques; 60; 2; 7-2016; 289-310 0214-1493 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_60216_02 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6063 info:eu-repo/semantics/altIdentifier/url/https://www.raco.cat/index.php/PublicacionsMatematiques/article/view/311009 info:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_60216_02 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Univeristat Autònoma de Barcelona |
| publisher.none.fl_str_mv |
Univeristat Autònoma de Barcelona |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597767751991296 |
| score |
13.3211565 |