Weighted mixed weak-type inequalities for multilinear operators
- Autores
- Li, Kangwe; Ombrosi, Sheldy Javier; Picardi, María Belén
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we present a theorem that generalizes Sawyer’s classic result about mixed weighted inequalities to the multilinear context. Let ~w = (w1, ..., wm) and ν = w 1 m 1 ...w 1 mm , the main result of the paper sentences that under different conditions on the weights we can obtain T ( ~f )(x) v L 1m ,∞(νv 1m ) ≤ C Ym i=1 kfikL1(wi), where T is a multilinear Calderón-Zygmund operator. To obtain this result we first prove it for the m-fold product of the Hardy-Littlewood maximal operator M, and also for M(f~)(x): the multi(sub)linear maximal function introduced in [13]. As an application we also prove a vector-valued extension to the mixed weighted weak-type inequalities of multilinear Calder´on-Zygmund operators.
Fil: Li, Kangwe. Basque Center Applied Mathematics; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Picardi, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
MULTILINEAR OPERATORS
MIXED WEIGHTED INEQUALITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86012
Ver los metadatos del registro completo
id |
CONICETDig_eebbe98fc5e4a31c1cc2b9b1d6dbdde6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86012 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted mixed weak-type inequalities for multilinear operatorsLi, KangweOmbrosi, Sheldy JavierPicardi, María BelénMULTILINEAR OPERATORSMIXED WEIGHTED INEQUALITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we present a theorem that generalizes Sawyer’s classic result about mixed weighted inequalities to the multilinear context. Let ~w = (w1, ..., wm) and ν = w 1 m 1 ...w 1 mm , the main result of the paper sentences that under different conditions on the weights we can obtain T ( ~f )(x) v L 1m ,∞(νv 1m ) ≤ C Ym i=1 kfikL1(wi), where T is a multilinear Calderón-Zygmund operator. To obtain this result we first prove it for the m-fold product of the Hardy-Littlewood maximal operator M, and also for M(f~)(x): the multi(sub)linear maximal function introduced in [13]. As an application we also prove a vector-valued extension to the mixed weighted weak-type inequalities of multilinear Calder´on-Zygmund operators.Fil: Li, Kangwe. Basque Center Applied Mathematics; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Picardi, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaPolish Academy of Sciences. Institute of Mathematics2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86012Li, Kangwe; Ombrosi, Sheldy Javier; Picardi, María Belén; Weighted mixed weak-type inequalities for multilinear operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 244; 5-2018; 203-2150039-3223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1705.09206info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/all/244/2/112487/weighted-mixed-weak-type-inequalities-for-multilinear-operatorsinfo:eu-repo/semantics/altIdentifier/doi/10.4064/sm170529-31-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:27Zoai:ri.conicet.gov.ar:11336/86012instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:27.406CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted mixed weak-type inequalities for multilinear operators |
title |
Weighted mixed weak-type inequalities for multilinear operators |
spellingShingle |
Weighted mixed weak-type inequalities for multilinear operators Li, Kangwe MULTILINEAR OPERATORS MIXED WEIGHTED INEQUALITIES |
title_short |
Weighted mixed weak-type inequalities for multilinear operators |
title_full |
Weighted mixed weak-type inequalities for multilinear operators |
title_fullStr |
Weighted mixed weak-type inequalities for multilinear operators |
title_full_unstemmed |
Weighted mixed weak-type inequalities for multilinear operators |
title_sort |
Weighted mixed weak-type inequalities for multilinear operators |
dc.creator.none.fl_str_mv |
Li, Kangwe Ombrosi, Sheldy Javier Picardi, María Belén |
author |
Li, Kangwe |
author_facet |
Li, Kangwe Ombrosi, Sheldy Javier Picardi, María Belén |
author_role |
author |
author2 |
Ombrosi, Sheldy Javier Picardi, María Belén |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MULTILINEAR OPERATORS MIXED WEIGHTED INEQUALITIES |
topic |
MULTILINEAR OPERATORS MIXED WEIGHTED INEQUALITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we present a theorem that generalizes Sawyer’s classic result about mixed weighted inequalities to the multilinear context. Let ~w = (w1, ..., wm) and ν = w 1 m 1 ...w 1 mm , the main result of the paper sentences that under different conditions on the weights we can obtain T ( ~f )(x) v L 1m ,∞(νv 1m ) ≤ C Ym i=1 kfikL1(wi), where T is a multilinear Calderón-Zygmund operator. To obtain this result we first prove it for the m-fold product of the Hardy-Littlewood maximal operator M, and also for M(f~)(x): the multi(sub)linear maximal function introduced in [13]. As an application we also prove a vector-valued extension to the mixed weighted weak-type inequalities of multilinear Calder´on-Zygmund operators. Fil: Li, Kangwe. Basque Center Applied Mathematics; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Picardi, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
In this paper we present a theorem that generalizes Sawyer’s classic result about mixed weighted inequalities to the multilinear context. Let ~w = (w1, ..., wm) and ν = w 1 m 1 ...w 1 mm , the main result of the paper sentences that under different conditions on the weights we can obtain T ( ~f )(x) v L 1m ,∞(νv 1m ) ≤ C Ym i=1 kfikL1(wi), where T is a multilinear Calderón-Zygmund operator. To obtain this result we first prove it for the m-fold product of the Hardy-Littlewood maximal operator M, and also for M(f~)(x): the multi(sub)linear maximal function introduced in [13]. As an application we also prove a vector-valued extension to the mixed weighted weak-type inequalities of multilinear Calder´on-Zygmund operators. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86012 Li, Kangwe; Ombrosi, Sheldy Javier; Picardi, María Belén; Weighted mixed weak-type inequalities for multilinear operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 244; 5-2018; 203-215 0039-3223 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86012 |
identifier_str_mv |
Li, Kangwe; Ombrosi, Sheldy Javier; Picardi, María Belén; Weighted mixed weak-type inequalities for multilinear operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 244; 5-2018; 203-215 0039-3223 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1705.09206 info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/all/244/2/112487/weighted-mixed-weak-type-inequalities-for-multilinear-operators info:eu-repo/semantics/altIdentifier/doi/10.4064/sm170529-31-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268732642033664 |
score |
13.13397 |