Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators

Autores
Carando, Daniel Germán; Galicer, Daniel Eric
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study tensor norms that destroy unconditionality in the following sense: for every Banach space E with unconditional basis, the n-fold tensor product of E (with the corresponding tensor norm) does not have unconditional basis. We establish an easy criterion to check whether a tensor norm destroys unconditionality or not. Using this test we get that all injective and projective tensor norms different from ε and π destroy unconditionality, both in full and symmetric tensor products. We present applications to polynomial ideals: we show that many usual polynomial ideals never have the Gordon–Lewis property. In some cases we even obtain that the monomial basic sequence can never be unconditional. Analogous problems for multilinear ideals are addressed, and noteworthy differences between the 2-fold and the n-fold (n ≥ 3) theory are obtained.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Unconditional bases
tensor products
homogenous polynomials
multilinear operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15021

id CONICETDig_b0c57c5c6808129e9b74726bf6529226
oai_identifier_str oai:ri.conicet.gov.ar:11336/15021
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Unconditionality in tensor products and ideals of polynomials, multilinear forms and operatorsCarando, Daniel GermánGalicer, Daniel EricUnconditional basestensor productshomogenous polynomialsmultilinear operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study tensor norms that destroy unconditionality in the following sense: for every Banach space E with unconditional basis, the n-fold tensor product of E (with the corresponding tensor norm) does not have unconditional basis. We establish an easy criterion to check whether a tensor norm destroys unconditionality or not. Using this test we get that all injective and projective tensor norms different from ε and π destroy unconditionality, both in full and symmetric tensor products. We present applications to polynomial ideals: we show that many usual polynomial ideals never have the Gordon–Lewis property. In some cases we even obtain that the monomial basic sequence can never be unconditional. Analogous problems for multilinear ideals are addressed, and noteworthy differences between the 2-fold and the n-fold (n ≥ 3) theory are obtained.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaOxford University Press2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15021Carando, Daniel Germán; Galicer, Daniel Eric; Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators; Oxford University Press; Quarterly Journal Of Mathematics; 62; 4; 10-2011; 845-8690033-5606enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/62/4/845/1574414/UNCONDITIONALITY-IN-TENSOR-PRODUCTS-AND-IDEALS-OF?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/haq024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:22Zoai:ri.conicet.gov.ar:11336/15021instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:23.079CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
title Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
spellingShingle Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
Carando, Daniel Germán
Unconditional bases
tensor products
homogenous polynomials
multilinear operators
title_short Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
title_full Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
title_fullStr Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
title_full_unstemmed Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
title_sort Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
dc.creator.none.fl_str_mv Carando, Daniel Germán
Galicer, Daniel Eric
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Galicer, Daniel Eric
author_role author
author2 Galicer, Daniel Eric
author2_role author
dc.subject.none.fl_str_mv Unconditional bases
tensor products
homogenous polynomials
multilinear operators
topic Unconditional bases
tensor products
homogenous polynomials
multilinear operators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study tensor norms that destroy unconditionality in the following sense: for every Banach space E with unconditional basis, the n-fold tensor product of E (with the corresponding tensor norm) does not have unconditional basis. We establish an easy criterion to check whether a tensor norm destroys unconditionality or not. Using this test we get that all injective and projective tensor norms different from ε and π destroy unconditionality, both in full and symmetric tensor products. We present applications to polynomial ideals: we show that many usual polynomial ideals never have the Gordon–Lewis property. In some cases we even obtain that the monomial basic sequence can never be unconditional. Analogous problems for multilinear ideals are addressed, and noteworthy differences between the 2-fold and the n-fold (n ≥ 3) theory are obtained.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We study tensor norms that destroy unconditionality in the following sense: for every Banach space E with unconditional basis, the n-fold tensor product of E (with the corresponding tensor norm) does not have unconditional basis. We establish an easy criterion to check whether a tensor norm destroys unconditionality or not. Using this test we get that all injective and projective tensor norms different from ε and π destroy unconditionality, both in full and symmetric tensor products. We present applications to polynomial ideals: we show that many usual polynomial ideals never have the Gordon–Lewis property. In some cases we even obtain that the monomial basic sequence can never be unconditional. Analogous problems for multilinear ideals are addressed, and noteworthy differences between the 2-fold and the n-fold (n ≥ 3) theory are obtained.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15021
Carando, Daniel Germán; Galicer, Daniel Eric; Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators; Oxford University Press; Quarterly Journal Of Mathematics; 62; 4; 10-2011; 845-869
0033-5606
url http://hdl.handle.net/11336/15021
identifier_str_mv Carando, Daniel Germán; Galicer, Daniel Eric; Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators; Oxford University Press; Quarterly Journal Of Mathematics; 62; 4; 10-2011; 845-869
0033-5606
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/62/4/845/1574414/UNCONDITIONALITY-IN-TENSOR-PRODUCTS-AND-IDEALS-OF?redirectedFrom=fulltext
info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/haq024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614050139340800
score 13.070432