Decoupling inequalities with exponential constants

Autores
Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sevilla Peris, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Politécnica de Valencia; España
Materia
DECOUPLING INEQUALITIES
BANACH SPACES
VECTOR-VALUED RANDOM VARIABLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/249479

id CONICETDig_c393ec099b6de57253f87be4fa1f7108
oai_identifier_str oai:ri.conicet.gov.ar:11336/249479
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decoupling inequalities with exponential constantsCarando, Daniel GermánMarceca, FelipeSevilla Peris, PabloDECOUPLING INEQUALITIESBANACH SPACESVECTOR-VALUED RANDOM VARIABLEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sevilla Peris, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Politécnica de Valencia; EspañaSpringer2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/249479Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Decoupling inequalities with exponential constants; Springer; Mathematische Annalen; 386; 1-2; 6-2023; 1041-10790025-5831CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-022-02418-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-022-02418-4info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2012.15293info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:35Zoai:ri.conicet.gov.ar:11336/249479instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:36.207CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decoupling inequalities with exponential constants
title Decoupling inequalities with exponential constants
spellingShingle Decoupling inequalities with exponential constants
Carando, Daniel Germán
DECOUPLING INEQUALITIES
BANACH SPACES
VECTOR-VALUED RANDOM VARIABLES
title_short Decoupling inequalities with exponential constants
title_full Decoupling inequalities with exponential constants
title_fullStr Decoupling inequalities with exponential constants
title_full_unstemmed Decoupling inequalities with exponential constants
title_sort Decoupling inequalities with exponential constants
dc.creator.none.fl_str_mv Carando, Daniel Germán
Marceca, Felipe
Sevilla Peris, Pablo
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Marceca, Felipe
Sevilla Peris, Pablo
author_role author
author2 Marceca, Felipe
Sevilla Peris, Pablo
author2_role author
author
dc.subject.none.fl_str_mv DECOUPLING INEQUALITIES
BANACH SPACES
VECTOR-VALUED RANDOM VARIABLES
topic DECOUPLING INEQUALITIES
BANACH SPACES
VECTOR-VALUED RANDOM VARIABLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sevilla Peris, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Politécnica de Valencia; España
description Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/249479
Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Decoupling inequalities with exponential constants; Springer; Mathematische Annalen; 386; 1-2; 6-2023; 1041-1079
0025-5831
CONICET Digital
CONICET
url http://hdl.handle.net/11336/249479
identifier_str_mv Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Decoupling inequalities with exponential constants; Springer; Mathematische Annalen; 386; 1-2; 6-2023; 1041-1079
0025-5831
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-022-02418-4
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-022-02418-4
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2012.15293
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613110038528000
score 13.070432