Decoupling inequalities with exponential constants
- Autores
- Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sevilla Peris, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Politécnica de Valencia; España - Materia
-
DECOUPLING INEQUALITIES
BANACH SPACES
VECTOR-VALUED RANDOM VARIABLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/249479
Ver los metadatos del registro completo
id |
CONICETDig_c393ec099b6de57253f87be4fa1f7108 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/249479 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Decoupling inequalities with exponential constantsCarando, Daniel GermánMarceca, FelipeSevilla Peris, PabloDECOUPLING INEQUALITIESBANACH SPACESVECTOR-VALUED RANDOM VARIABLEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sevilla Peris, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Politécnica de Valencia; EspañaSpringer2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/249479Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Decoupling inequalities with exponential constants; Springer; Mathematische Annalen; 386; 1-2; 6-2023; 1041-10790025-5831CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-022-02418-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-022-02418-4info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2012.15293info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:35Zoai:ri.conicet.gov.ar:11336/249479instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:36.207CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Decoupling inequalities with exponential constants |
title |
Decoupling inequalities with exponential constants |
spellingShingle |
Decoupling inequalities with exponential constants Carando, Daniel Germán DECOUPLING INEQUALITIES BANACH SPACES VECTOR-VALUED RANDOM VARIABLES |
title_short |
Decoupling inequalities with exponential constants |
title_full |
Decoupling inequalities with exponential constants |
title_fullStr |
Decoupling inequalities with exponential constants |
title_full_unstemmed |
Decoupling inequalities with exponential constants |
title_sort |
Decoupling inequalities with exponential constants |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Marceca, Felipe Sevilla Peris, Pablo |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Marceca, Felipe Sevilla Peris, Pablo |
author_role |
author |
author2 |
Marceca, Felipe Sevilla Peris, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DECOUPLING INEQUALITIES BANACH SPACES VECTOR-VALUED RANDOM VARIABLES |
topic |
DECOUPLING INEQUALITIES BANACH SPACES VECTOR-VALUED RANDOM VARIABLES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sevilla Peris, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Politécnica de Valencia; España |
description |
Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities for vector-valued homogeneous polynomials evaluated at random variables. We focus on providing geometric conditions ensuring decoupling inequalities with good constants depending only exponentially on the degree of the polynomial. Assuming the Banach space has finite cotype we achieve this for classical decoupling inequalities that compare the polynomials with their associated multilinear operators. Under stronger geometric assumptions on the involved Banach spaces, we also obtain decoupling inequalities between random polynomials and fully independent random sums of their coefficients. Finally, we present decoupling inequalities where in the multilinear operator just two independent copies of the random vector are involved. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/249479 Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Decoupling inequalities with exponential constants; Springer; Mathematische Annalen; 386; 1-2; 6-2023; 1041-1079 0025-5831 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/249479 |
identifier_str_mv |
Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Decoupling inequalities with exponential constants; Springer; Mathematische Annalen; 386; 1-2; 6-2023; 1041-1079 0025-5831 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-022-02418-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-022-02418-4 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2012.15293 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613110038528000 |
score |
13.070432 |