Multilinear Marcinkiewicz-Zygmund inequalities
- Autores
- Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzitelli, Martin Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Departamento de Matemática; Argentina
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina - Materia
-
CalderÓN-Zygmund Operators
Multilinear Operators
Vector-Valued Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61627
Ver los metadatos del registro completo
id |
CONICETDig_b82deb9ae97fb347e19ee92f2560cace |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61627 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multilinear Marcinkiewicz-Zygmund inequalitiesCarando, Daniel GermánMazzitelli, Martin DiegoOmbrosi, Sheldy JavierCalderÓN-Zygmund OperatorsMultilinear OperatorsVector-Valued Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Mazzitelli, Martin Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Departamento de Matemática; ArgentinaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaBirkhauser Boston Inc2017-09-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61627Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier; Multilinear Marcinkiewicz-Zygmund inequalities; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 12-9-2017; 1-351069-5869CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-017-9563-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-017-9563-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:32Zoai:ri.conicet.gov.ar:11336/61627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:32.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multilinear Marcinkiewicz-Zygmund inequalities |
title |
Multilinear Marcinkiewicz-Zygmund inequalities |
spellingShingle |
Multilinear Marcinkiewicz-Zygmund inequalities Carando, Daniel Germán CalderÓN-Zygmund Operators Multilinear Operators Vector-Valued Inequalities |
title_short |
Multilinear Marcinkiewicz-Zygmund inequalities |
title_full |
Multilinear Marcinkiewicz-Zygmund inequalities |
title_fullStr |
Multilinear Marcinkiewicz-Zygmund inequalities |
title_full_unstemmed |
Multilinear Marcinkiewicz-Zygmund inequalities |
title_sort |
Multilinear Marcinkiewicz-Zygmund inequalities |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Mazzitelli, Martin Diego Ombrosi, Sheldy Javier |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Mazzitelli, Martin Diego Ombrosi, Sheldy Javier |
author_role |
author |
author2 |
Mazzitelli, Martin Diego Ombrosi, Sheldy Javier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CalderÓN-Zygmund Operators Multilinear Operators Vector-Valued Inequalities |
topic |
CalderÓN-Zygmund Operators Multilinear Operators Vector-Valued Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Mazzitelli, Martin Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Departamento de Matemática; Argentina Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina |
description |
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61627 Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier; Multilinear Marcinkiewicz-Zygmund inequalities; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 12-9-2017; 1-35 1069-5869 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61627 |
identifier_str_mv |
Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier; Multilinear Marcinkiewicz-Zygmund inequalities; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 12-9-2017; 1-35 1069-5869 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-017-9563-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-017-9563-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Boston Inc |
publisher.none.fl_str_mv |
Birkhauser Boston Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269231814541312 |
score |
13.13397 |