Multilinear Marcinkiewicz-Zygmund inequalities

Autores
Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzitelli, Martin Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Departamento de Matemática; Argentina
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
CalderÓN-Zygmund Operators
Multilinear Operators
Vector-Valued Inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61627

id CONICETDig_b82deb9ae97fb347e19ee92f2560cace
oai_identifier_str oai:ri.conicet.gov.ar:11336/61627
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multilinear Marcinkiewicz-Zygmund inequalitiesCarando, Daniel GermánMazzitelli, Martin DiegoOmbrosi, Sheldy JavierCalderÓN-Zygmund OperatorsMultilinear OperatorsVector-Valued Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Mazzitelli, Martin Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Departamento de Matemática; ArgentinaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaBirkhauser Boston Inc2017-09-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61627Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier; Multilinear Marcinkiewicz-Zygmund inequalities; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 12-9-2017; 1-351069-5869CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-017-9563-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-017-9563-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:32Zoai:ri.conicet.gov.ar:11336/61627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:32.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multilinear Marcinkiewicz-Zygmund inequalities
title Multilinear Marcinkiewicz-Zygmund inequalities
spellingShingle Multilinear Marcinkiewicz-Zygmund inequalities
Carando, Daniel Germán
CalderÓN-Zygmund Operators
Multilinear Operators
Vector-Valued Inequalities
title_short Multilinear Marcinkiewicz-Zygmund inequalities
title_full Multilinear Marcinkiewicz-Zygmund inequalities
title_fullStr Multilinear Marcinkiewicz-Zygmund inequalities
title_full_unstemmed Multilinear Marcinkiewicz-Zygmund inequalities
title_sort Multilinear Marcinkiewicz-Zygmund inequalities
dc.creator.none.fl_str_mv Carando, Daniel Germán
Mazzitelli, Martin Diego
Ombrosi, Sheldy Javier
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Mazzitelli, Martin Diego
Ombrosi, Sheldy Javier
author_role author
author2 Mazzitelli, Martin Diego
Ombrosi, Sheldy Javier
author2_role author
author
dc.subject.none.fl_str_mv CalderÓN-Zygmund Operators
Multilinear Operators
Vector-Valued Inequalities
topic CalderÓN-Zygmund Operators
Multilinear Operators
Vector-Valued Inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzitelli, Martin Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Departamento de Matemática; Argentina
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on (Formula presented.)-valued extensions of linear operators. We show that for certain (Formula presented.), there is a constant (Formula presented.) such that for every bounded multilinear operator (Formula presented.) and functions (Formula presented.), the following inequality holds (Formula presented.)In some cases we also calculate the best constant (Formula presented.) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61627
Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier; Multilinear Marcinkiewicz-Zygmund inequalities; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 12-9-2017; 1-35
1069-5869
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61627
identifier_str_mv Carando, Daniel Germán; Mazzitelli, Martin Diego; Ombrosi, Sheldy Javier; Multilinear Marcinkiewicz-Zygmund inequalities; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 12-9-2017; 1-35
1069-5869
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-017-9563-5
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-017-9563-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Boston Inc
publisher.none.fl_str_mv Birkhauser Boston Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269231814541312
score 13.13397