Some polynomial versions of cotype and applications
- Autores
- Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Defant, Andreas. Universität Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
Cotype
Banach Spaces
Monomial Convergence
Vector-Valued Dirichlet Series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18938
Ver los metadatos del registro completo
id |
CONICETDig_fd03bffea3af6fa420b9695a2182c054 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18938 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Some polynomial versions of cotype and applicationsCarando, Daniel GermánDefant, AndreasSevilla Peris, PabloCotypeBanach SpacesMonomial ConvergenceVector-Valued Dirichlet Serieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Defant, Andreas. Universität Oldenburg; AlemaniaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaElsevier Inc2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18938Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Some polynomial versions of cotype and applications; Elsevier Inc; Journal Of Functional Analysis; 270; 1; 1-2016; 68-870022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2015.09.017info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123615003870info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00850info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:52Zoai:ri.conicet.gov.ar:11336/18938instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:52.365CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Some polynomial versions of cotype and applications |
title |
Some polynomial versions of cotype and applications |
spellingShingle |
Some polynomial versions of cotype and applications Carando, Daniel Germán Cotype Banach Spaces Monomial Convergence Vector-Valued Dirichlet Series |
title_short |
Some polynomial versions of cotype and applications |
title_full |
Some polynomial versions of cotype and applications |
title_fullStr |
Some polynomial versions of cotype and applications |
title_full_unstemmed |
Some polynomial versions of cotype and applications |
title_sort |
Some polynomial versions of cotype and applications |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
author_role |
author |
author2 |
Defant, Andreas Sevilla Peris, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Cotype Banach Spaces Monomial Convergence Vector-Valued Dirichlet Series |
topic |
Cotype Banach Spaces Monomial Convergence Vector-Valued Dirichlet Series |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Defant, Andreas. Universität Oldenburg; Alemania Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España |
description |
We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18938 Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Some polynomial versions of cotype and applications; Elsevier Inc; Journal Of Functional Analysis; 270; 1; 1-2016; 68-87 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18938 |
identifier_str_mv |
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Some polynomial versions of cotype and applications; Elsevier Inc; Journal Of Functional Analysis; 270; 1; 1-2016; 68-87 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2015.09.017 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123615003870 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00850 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613837988298752 |
score |
13.070432 |