Some polynomial versions of cotype and applications

Autores
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Defant, Andreas. Universität Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
Materia
Cotype
Banach Spaces
Monomial Convergence
Vector-Valued Dirichlet Series
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18938

id CONICETDig_fd03bffea3af6fa420b9695a2182c054
oai_identifier_str oai:ri.conicet.gov.ar:11336/18938
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some polynomial versions of cotype and applicationsCarando, Daniel GermánDefant, AndreasSevilla Peris, PabloCotypeBanach SpacesMonomial ConvergenceVector-Valued Dirichlet Serieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Defant, Andreas. Universität Oldenburg; AlemaniaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaElsevier Inc2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18938Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Some polynomial versions of cotype and applications; Elsevier Inc; Journal Of Functional Analysis; 270; 1; 1-2016; 68-870022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2015.09.017info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123615003870info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00850info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:52Zoai:ri.conicet.gov.ar:11336/18938instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:52.365CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some polynomial versions of cotype and applications
title Some polynomial versions of cotype and applications
spellingShingle Some polynomial versions of cotype and applications
Carando, Daniel Germán
Cotype
Banach Spaces
Monomial Convergence
Vector-Valued Dirichlet Series
title_short Some polynomial versions of cotype and applications
title_full Some polynomial versions of cotype and applications
title_fullStr Some polynomial versions of cotype and applications
title_full_unstemmed Some polynomial versions of cotype and applications
title_sort Some polynomial versions of cotype and applications
dc.creator.none.fl_str_mv Carando, Daniel Germán
Defant, Andreas
Sevilla Peris, Pablo
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Defant, Andreas
Sevilla Peris, Pablo
author_role author
author2 Defant, Andreas
Sevilla Peris, Pablo
author2_role author
author
dc.subject.none.fl_str_mv Cotype
Banach Spaces
Monomial Convergence
Vector-Valued Dirichlet Series
topic Cotype
Banach Spaces
Monomial Convergence
Vector-Valued Dirichlet Series
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Defant, Andreas. Universität Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
description We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18938
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Some polynomial versions of cotype and applications; Elsevier Inc; Journal Of Functional Analysis; 270; 1; 1-2016; 68-87
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18938
identifier_str_mv Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Some polynomial versions of cotype and applications; Elsevier Inc; Journal Of Functional Analysis; 270; 1; 1-2016; 68-87
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2015.09.017
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123615003870
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00850
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613837988298752
score 13.070432