Hausdorff-Young-type inequalities for vector-valued Dirichlet series
- Autores
- Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study Hausdorff-Young-type inequalities for vector-valued Dirichlet series which allow us to compare the norm of a Dirichlet series in the Hardy space Hp(X) with the q-norm of its coefficients. In order to obtain inequalities completely analogous to the scalar case, a Banach space must satisfy the restrictive notion of Fourier type/cotype. We show that variants of these inequalities hold for the much broader range of spaces enjoying type/cotype. We also consider Hausdorff-Young-type inequalities for functions defined on the infinite torus T ∞ or the boolean cube {-1, 1}∞. As a fundamental tool we show that type and cotype are equivalent to a hypercontractive homogeneous polynomial type and cotype, a result of independent interest.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
HAUSDORFF-YOUNG INEQUALITIES
DIRICHLET SERIES
BANACH SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/141626
Ver los metadatos del registro completo
id |
CONICETDig_21f1b037d26a4524ba2245c4d2874773 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/141626 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hausdorff-Young-type inequalities for vector-valued Dirichlet seriesCarando, Daniel GermánMarceca, FelipeSevilla Peris, PabloHAUSDORFF-YOUNG INEQUALITIESDIRICHLET SERIESBANACH SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study Hausdorff-Young-type inequalities for vector-valued Dirichlet series which allow us to compare the norm of a Dirichlet series in the Hardy space Hp(X) with the q-norm of its coefficients. In order to obtain inequalities completely analogous to the scalar case, a Banach space must satisfy the restrictive notion of Fourier type/cotype. We show that variants of these inequalities hold for the much broader range of spaces enjoying type/cotype. We also consider Hausdorff-Young-type inequalities for functions defined on the infinite torus T ∞ or the boolean cube {-1, 1}∞. As a fundamental tool we show that type and cotype are equivalent to a hypercontractive homogeneous polynomial type and cotype, a result of independent interest.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaAmerican Mathematical Society2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141626Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Hausdorff-Young-type inequalities for vector-valued Dirichlet series; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 8; 8-2020; 5627-56520002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2020-373-08/S0002-9947-2020-08147-1/info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/8147info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1904.00041info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:51Zoai:ri.conicet.gov.ar:11336/141626instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:52.091CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series |
title |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series |
spellingShingle |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series Carando, Daniel Germán HAUSDORFF-YOUNG INEQUALITIES DIRICHLET SERIES BANACH SPACES |
title_short |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series |
title_full |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series |
title_fullStr |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series |
title_full_unstemmed |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series |
title_sort |
Hausdorff-Young-type inequalities for vector-valued Dirichlet series |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Marceca, Felipe Sevilla Peris, Pablo |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Marceca, Felipe Sevilla Peris, Pablo |
author_role |
author |
author2 |
Marceca, Felipe Sevilla Peris, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HAUSDORFF-YOUNG INEQUALITIES DIRICHLET SERIES BANACH SPACES |
topic |
HAUSDORFF-YOUNG INEQUALITIES DIRICHLET SERIES BANACH SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study Hausdorff-Young-type inequalities for vector-valued Dirichlet series which allow us to compare the norm of a Dirichlet series in the Hardy space Hp(X) with the q-norm of its coefficients. In order to obtain inequalities completely analogous to the scalar case, a Banach space must satisfy the restrictive notion of Fourier type/cotype. We show that variants of these inequalities hold for the much broader range of spaces enjoying type/cotype. We also consider Hausdorff-Young-type inequalities for functions defined on the infinite torus T ∞ or the boolean cube {-1, 1}∞. As a fundamental tool we show that type and cotype are equivalent to a hypercontractive homogeneous polynomial type and cotype, a result of independent interest. Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Marceca, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España |
description |
We study Hausdorff-Young-type inequalities for vector-valued Dirichlet series which allow us to compare the norm of a Dirichlet series in the Hardy space Hp(X) with the q-norm of its coefficients. In order to obtain inequalities completely analogous to the scalar case, a Banach space must satisfy the restrictive notion of Fourier type/cotype. We show that variants of these inequalities hold for the much broader range of spaces enjoying type/cotype. We also consider Hausdorff-Young-type inequalities for functions defined on the infinite torus T ∞ or the boolean cube {-1, 1}∞. As a fundamental tool we show that type and cotype are equivalent to a hypercontractive homogeneous polynomial type and cotype, a result of independent interest. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/141626 Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Hausdorff-Young-type inequalities for vector-valued Dirichlet series; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 8; 8-2020; 5627-5652 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/141626 |
identifier_str_mv |
Carando, Daniel Germán; Marceca, Felipe; Sevilla Peris, Pablo; Hausdorff-Young-type inequalities for vector-valued Dirichlet series; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 8; 8-2020; 5627-5652 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2020-373-08/S0002-9947-2020-08147-1/ info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/8147 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1904.00041 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082610272403456 |
score |
13.22299 |