Monomial convergence on ℓr
- Autores
- Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces.
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires; Argentina
Fil: Mansilla, Martín. Universidad de Buenos Aires; Argentina
Fil: Muro, Santiago. Universidad Nacional de Rosario; Argentina
Fil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
BANACH SEQUENCE SPACE
HOLOMORPHIC FUNCTION
HOMOGENEOUS POLYNOMIAL
MONOMIAL CONVERGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167111
Ver los metadatos del registro completo
id |
CONICETDig_2faad8cee3190b3eac164e770b8836f4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Monomial convergence on ℓrGalicer, Daniel EricMansilla, MartínMuro, SantiagoSevilla-Peris, PabloBANACH SEQUENCE SPACEHOLOMORPHIC FUNCTIONHOMOGENEOUS POLYNOMIALMONOMIAL CONVERGENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces.Fil: Galicer, Daniel Eric. Universidad de Buenos Aires; ArgentinaFil: Mansilla, Martín. Universidad de Buenos Aires; ArgentinaFil: Muro, Santiago. Universidad Nacional de Rosario; ArgentinaFil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; EspañaMathematical Science Publishers2021-05-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167111Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo; Monomial convergence on ℓr; Mathematical Science Publishers; Analysis and PDE; 14; 3; 18-5-2021; 945-9832157-50451948-206XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2021.14.945info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1905.05081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:29Zoai:ri.conicet.gov.ar:11336/167111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:29.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Monomial convergence on ℓr |
title |
Monomial convergence on ℓr |
spellingShingle |
Monomial convergence on ℓr Galicer, Daniel Eric BANACH SEQUENCE SPACE HOLOMORPHIC FUNCTION HOMOGENEOUS POLYNOMIAL MONOMIAL CONVERGENCE |
title_short |
Monomial convergence on ℓr |
title_full |
Monomial convergence on ℓr |
title_fullStr |
Monomial convergence on ℓr |
title_full_unstemmed |
Monomial convergence on ℓr |
title_sort |
Monomial convergence on ℓr |
dc.creator.none.fl_str_mv |
Galicer, Daniel Eric Mansilla, Martín Muro, Santiago Sevilla-Peris, Pablo |
author |
Galicer, Daniel Eric |
author_facet |
Galicer, Daniel Eric Mansilla, Martín Muro, Santiago Sevilla-Peris, Pablo |
author_role |
author |
author2 |
Mansilla, Martín Muro, Santiago Sevilla-Peris, Pablo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BANACH SEQUENCE SPACE HOLOMORPHIC FUNCTION HOMOGENEOUS POLYNOMIAL MONOMIAL CONVERGENCE |
topic |
BANACH SEQUENCE SPACE HOLOMORPHIC FUNCTION HOMOGENEOUS POLYNOMIAL MONOMIAL CONVERGENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces. Fil: Galicer, Daniel Eric. Universidad de Buenos Aires; Argentina Fil: Mansilla, Martín. Universidad de Buenos Aires; Argentina Fil: Muro, Santiago. Universidad Nacional de Rosario; Argentina Fil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; España |
description |
We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167111 Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo; Monomial convergence on ℓr; Mathematical Science Publishers; Analysis and PDE; 14; 3; 18-5-2021; 945-983 2157-5045 1948-206X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/167111 |
identifier_str_mv |
Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo; Monomial convergence on ℓr; Mathematical Science Publishers; Analysis and PDE; 14; 3; 18-5-2021; 945-983 2157-5045 1948-206X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2021.14.945 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1905.05081 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Science Publishers |
publisher.none.fl_str_mv |
Mathematical Science Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083005106356224 |
score |
13.22299 |