Monomial convergence on ℓr

Autores
Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces.
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires; Argentina
Fil: Mansilla, Martín. Universidad de Buenos Aires; Argentina
Fil: Muro, Santiago. Universidad Nacional de Rosario; Argentina
Fil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; España
Materia
BANACH SEQUENCE SPACE
HOLOMORPHIC FUNCTION
HOMOGENEOUS POLYNOMIAL
MONOMIAL CONVERGENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167111

id CONICETDig_2faad8cee3190b3eac164e770b8836f4
oai_identifier_str oai:ri.conicet.gov.ar:11336/167111
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Monomial convergence on ℓrGalicer, Daniel EricMansilla, MartínMuro, SantiagoSevilla-Peris, PabloBANACH SEQUENCE SPACEHOLOMORPHIC FUNCTIONHOMOGENEOUS POLYNOMIALMONOMIAL CONVERGENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces.Fil: Galicer, Daniel Eric. Universidad de Buenos Aires; ArgentinaFil: Mansilla, Martín. Universidad de Buenos Aires; ArgentinaFil: Muro, Santiago. Universidad Nacional de Rosario; ArgentinaFil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; EspañaMathematical Science Publishers2021-05-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167111Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo; Monomial convergence on ℓr; Mathematical Science Publishers; Analysis and PDE; 14; 3; 18-5-2021; 945-9832157-50451948-206XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2021.14.945info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1905.05081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:29Zoai:ri.conicet.gov.ar:11336/167111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:29.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Monomial convergence on ℓr
title Monomial convergence on ℓr
spellingShingle Monomial convergence on ℓr
Galicer, Daniel Eric
BANACH SEQUENCE SPACE
HOLOMORPHIC FUNCTION
HOMOGENEOUS POLYNOMIAL
MONOMIAL CONVERGENCE
title_short Monomial convergence on ℓr
title_full Monomial convergence on ℓr
title_fullStr Monomial convergence on ℓr
title_full_unstemmed Monomial convergence on ℓr
title_sort Monomial convergence on ℓr
dc.creator.none.fl_str_mv Galicer, Daniel Eric
Mansilla, Martín
Muro, Santiago
Sevilla-Peris, Pablo
author Galicer, Daniel Eric
author_facet Galicer, Daniel Eric
Mansilla, Martín
Muro, Santiago
Sevilla-Peris, Pablo
author_role author
author2 Mansilla, Martín
Muro, Santiago
Sevilla-Peris, Pablo
author2_role author
author
author
dc.subject.none.fl_str_mv BANACH SEQUENCE SPACE
HOLOMORPHIC FUNCTION
HOMOGENEOUS POLYNOMIAL
MONOMIAL CONVERGENCE
topic BANACH SEQUENCE SPACE
HOLOMORPHIC FUNCTION
HOMOGENEOUS POLYNOMIAL
MONOMIAL CONVERGENCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces.
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires; Argentina
Fil: Mansilla, Martín. Universidad de Buenos Aires; Argentina
Fil: Muro, Santiago. Universidad Nacional de Rosario; Argentina
Fil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; España
description We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over er for 1 < r < 2. For Hb(er), the space of entire functions of bounded type in er, we prove that mon Hb (er) is exactly the Marcinkiewicz sequence space m Ψ, where the symbol Ψr is given by Ψr(n): = log(n + 1)1-1/r for n ϵ ℕ0. For the space of m -homogeneous polynomials on er, we prove that the set of monomial convergence mon P(mer) contains the sequence space eq, where q = (mr 1)1 Moreover, we show that for any q < s < ∞, the Lorentz sequence space eq,s lies in mon P(mer), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H∞(Bir) (the space of bounded holomorphic functions on the unit ball of tr). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167111
Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo; Monomial convergence on ℓr; Mathematical Science Publishers; Analysis and PDE; 14; 3; 18-5-2021; 945-983
2157-5045
1948-206X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167111
identifier_str_mv Galicer, Daniel Eric; Mansilla, Martín; Muro, Santiago; Sevilla-Peris, Pablo; Monomial convergence on ℓr; Mathematical Science Publishers; Analysis and PDE; 14; 3; 18-5-2021; 945-983
2157-5045
1948-206X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2021.14.945
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1905.05081
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Science Publishers
publisher.none.fl_str_mv Mathematical Science Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083005106356224
score 13.22299