Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces

Autores
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina
Fil: Andreas Defant. Universidad de Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
Materia
BANACH SPACES
VECTOR-VALUED DIRICHLET SERIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93858

id CONICETDig_f9612510bded303d9ef60eb56c3cb071
oai_identifier_str oai:ri.conicet.gov.ar:11336/93858
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bohr's absolute convergence problem for Hp-Dirichlet series in banach spacesCarando, Daniel GermánDefant, AndreasSevilla Peris, PabloBANACH SPACESVECTOR-VALUED DIRICHLET SERIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; ArgentinaFil: Andreas Defant. Universidad de Oldenburg; AlemaniaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaMathematical Sciences Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93858Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-5272157-50451948-206XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2014.7.513info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:08Zoai:ri.conicet.gov.ar:11336/93858instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:08.823CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
title Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
spellingShingle Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
Carando, Daniel Germán
BANACH SPACES
VECTOR-VALUED DIRICHLET SERIES
title_short Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
title_full Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
title_fullStr Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
title_full_unstemmed Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
title_sort Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
dc.creator.none.fl_str_mv Carando, Daniel Germán
Defant, Andreas
Sevilla Peris, Pablo
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Defant, Andreas
Sevilla Peris, Pablo
author_role author
author2 Defant, Andreas
Sevilla Peris, Pablo
author2_role author
author
dc.subject.none.fl_str_mv BANACH SPACES
VECTOR-VALUED DIRICHLET SERIES
topic BANACH SPACES
VECTOR-VALUED DIRICHLET SERIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina
Fil: Andreas Defant. Universidad de Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
description The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93858
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-527
2157-5045
1948-206X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93858
identifier_str_mv Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-527
2157-5045
1948-206X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2014.7.513
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Sciences Publishers
publisher.none.fl_str_mv Mathematical Sciences Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613865583673344
score 13.070432