Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
- Autores
- Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina
Fil: Andreas Defant. Universidad de Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
BANACH SPACES
VECTOR-VALUED DIRICHLET SERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93858
Ver los metadatos del registro completo
id |
CONICETDig_f9612510bded303d9ef60eb56c3cb071 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93858 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spacesCarando, Daniel GermánDefant, AndreasSevilla Peris, PabloBANACH SPACESVECTOR-VALUED DIRICHLET SERIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; ArgentinaFil: Andreas Defant. Universidad de Oldenburg; AlemaniaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaMathematical Sciences Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93858Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-5272157-50451948-206XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2014.7.513info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:08Zoai:ri.conicet.gov.ar:11336/93858instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:08.823CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces |
title |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces |
spellingShingle |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces Carando, Daniel Germán BANACH SPACES VECTOR-VALUED DIRICHLET SERIES |
title_short |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces |
title_full |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces |
title_fullStr |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces |
title_full_unstemmed |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces |
title_sort |
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
author_role |
author |
author2 |
Defant, Andreas Sevilla Peris, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BANACH SPACES VECTOR-VALUED DIRICHLET SERIES |
topic |
BANACH SPACES VECTOR-VALUED DIRICHLET SERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina Fil: Andreas Defant. Universidad de Oldenburg; Alemania Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España |
description |
The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93858 Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-527 2157-5045 1948-206X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93858 |
identifier_str_mv |
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-527 2157-5045 1948-206X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2140/apde.2014.7.513 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613865583673344 |
score |
13.070432 |