C*- Modular Vector States

Autores
Andruchow, Esteban; Varela, Alejandro
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let B be a C^*-algebra and X a Hilbert C^*B-module. If  p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p  in B and x ∈ S_p(X), consider the  modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
STATE SPACE
C*-MODULE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106796

id CONICETDig_fcd33a4db3634524a32c89b95baa3101
oai_identifier_str oai:ri.conicet.gov.ar:11336/106796
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling C*- Modular Vector StatesAndruchow, EstebanVarela, AlejandroSTATE SPACEC*-MODULEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let B be a C^*-algebra and X a Hilbert C^*B-module. If  p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p  in B and x ∈ S_p(X), consider the  modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2005-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106796Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-1630378-620X1420-8989CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-002-1280-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-002-1280-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:12:33Zoai:ri.conicet.gov.ar:11336/106796instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:12:34.221CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv C*- Modular Vector States
title C*- Modular Vector States
spellingShingle C*- Modular Vector States
Andruchow, Esteban
STATE SPACE
C*-MODULE
title_short C*- Modular Vector States
title_full C*- Modular Vector States
title_fullStr C*- Modular Vector States
title_full_unstemmed C*- Modular Vector States
title_sort C*- Modular Vector States
dc.creator.none.fl_str_mv Andruchow, Esteban
Varela, Alejandro
author Andruchow, Esteban
author_facet Andruchow, Esteban
Varela, Alejandro
author_role author
author2 Varela, Alejandro
author2_role author
dc.subject.none.fl_str_mv STATE SPACE
C*-MODULE
topic STATE SPACE
C*-MODULE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let B be a C^*-algebra and X a Hilbert C^*B-module. If  p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p  in B and x ∈ S_p(X), consider the  modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Let B be a C^*-algebra and X a Hilbert C^*B-module. If  p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p  in B and x ∈ S_p(X), consider the  modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.
publishDate 2005
dc.date.none.fl_str_mv 2005-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106796
Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-163
0378-620X
1420-8989
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106796
identifier_str_mv Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-163
0378-620X
1420-8989
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-002-1280-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-002-1280-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782523366965248
score 12.982451