C*- Modular Vector States
- Autores
- Andruchow, Esteban; Varela, Alejandro
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let B be a C^*-algebra and X a Hilbert C^*B-module. If p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p in B and x ∈ S_p(X), consider the modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
STATE SPACE
C*-MODULE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106796
Ver los metadatos del registro completo
| id |
CONICETDig_fcd33a4db3634524a32c89b95baa3101 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106796 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
C*- Modular Vector StatesAndruchow, EstebanVarela, AlejandroSTATE SPACEC*-MODULEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let B be a C^*-algebra and X a Hilbert C^*B-module. If p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p in B and x ∈ S_p(X), consider the modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2005-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106796Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-1630378-620X1420-8989CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-002-1280-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-002-1280-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:12:33Zoai:ri.conicet.gov.ar:11336/106796instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:12:34.221CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
C*- Modular Vector States |
| title |
C*- Modular Vector States |
| spellingShingle |
C*- Modular Vector States Andruchow, Esteban STATE SPACE C*-MODULE |
| title_short |
C*- Modular Vector States |
| title_full |
C*- Modular Vector States |
| title_fullStr |
C*- Modular Vector States |
| title_full_unstemmed |
C*- Modular Vector States |
| title_sort |
C*- Modular Vector States |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Varela, Alejandro |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Varela, Alejandro |
| author_role |
author |
| author2 |
Varela, Alejandro |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
STATE SPACE C*-MODULE |
| topic |
STATE SPACE C*-MODULE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let B be a C^*-algebra and X a Hilbert C^*B-module. If p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p in B and x ∈ S_p(X), consider the modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Let B be a C^*-algebra and X a Hilbert C^*B-module. If p ∈ B is a projection, let S_p (X) = {x∈ X : (x,x) =p} be the p-sphere of X. For φ a state of B with support p in B and x ∈ S_p(X), consider the modular vector state φ_x of L_B(X) given by φ _x(t)=φ ((x,t(x))). The spheres S_p(X) provide fibrations S_p (X)→ Ο_φ = {φ_x: x ∈ S_p(X)}, x→φ_x, and S_p(X) x {states with support } p}→Σ_{p,x}={ modular vector states}, (x, φ)→φ_x. These fibrations enable us to examine the homotopy type of the sets of modular vector states, and relate it to the homotopy type of unitary groups and spaces of projections. We regard modular vector states as generalizations of pure states to the context of Hilbert C*-modules, and the above fibrations as generalizations of the projective fibration of a Hilbert space. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106796 Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-163 0378-620X 1420-8989 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/106796 |
| identifier_str_mv |
Andruchow, Esteban; Varela, Alejandro; C*- Modular Vector States; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 52; 2; 6-2005; 149-163 0378-620X 1420-8989 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-002-1280-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-002-1280-y |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782523366965248 |
| score |
12.982451 |