Relative entropy for coherent states from Araki formula

Autores
Casini, Horacio German; Grillo, Sergio Daniel; Pontello, Diego Esteban
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We make a rigorous computation of the relative entropy between the vacuum state and a coherent state for a free scalar in the framework of algebraic description of quantum field theory (AQFT). We study the case of the Rindler wedge. Previous calculations including path integral methods and computations from the lattice give a result for such relative entropy which involves integrals of expectation values of the energy-momentum stress tensor along the considered region. However, the stress tensor is in general nonunique. That means that if we start with some stress tensor, then we can "improve" it adding a conserved term without modifying the Poincaré charges. On the other hand, the presence of such an improving term affects the naive expectation for the relative entropy by a nonvanishing boundary contribution along the entangling surface. In other words, this means that there is an ambiguity in the usual formula for the relative entropy coming from the nonuniqueness of the stress tensor. The main motivation of this work is to solve this puzzle. We first show that all choices of stress tensor except the canonical one are not allowed by positivity and monotonicity of the relative entropy. Then we fully compute the relative entropy between the vacuum and a coherent state in the framework of AQFT using the Araki formula and the techniques of modular theory. After all, both results coincide and give the usual expression for the relative entropy calculated with the canonical stress tensor.
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
Relative entropy
Modular Theory
Coherent states
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125236

id CONICETDig_cb699c5e520e48fd038b3fe493ae1401
oai_identifier_str oai:ri.conicet.gov.ar:11336/125236
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Relative entropy for coherent states from Araki formulaCasini, Horacio GermanGrillo, Sergio DanielPontello, Diego EstebanRelative entropyModular TheoryCoherent stateshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We make a rigorous computation of the relative entropy between the vacuum state and a coherent state for a free scalar in the framework of algebraic description of quantum field theory (AQFT). We study the case of the Rindler wedge. Previous calculations including path integral methods and computations from the lattice give a result for such relative entropy which involves integrals of expectation values of the energy-momentum stress tensor along the considered region. However, the stress tensor is in general nonunique. That means that if we start with some stress tensor, then we can "improve" it adding a conserved term without modifying the Poincaré charges. On the other hand, the presence of such an improving term affects the naive expectation for the relative entropy by a nonvanishing boundary contribution along the entangling surface. In other words, this means that there is an ambiguity in the usual formula for the relative entropy coming from the nonuniqueness of the stress tensor. The main motivation of this work is to solve this puzzle. We first show that all choices of stress tensor except the canonical one are not allowed by positivity and monotonicity of the relative entropy. Then we fully compute the relative entropy between the vacuum and a coherent state in the framework of AQFT using the Araki formula and the techniques of modular theory. After all, both results coincide and give the usual expression for the relative entropy calculated with the canonical stress tensor.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2019-06-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125236Casini, Horacio German; Grillo, Sergio Daniel; Pontello, Diego Esteban; Relative entropy for coherent states from Araki formula; American Physical Society; Physical Review D; 99; 125020; 28-6-2019; 1-262470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.125020info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.99.125020info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.00109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:52:05Zoai:ri.conicet.gov.ar:11336/125236instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:52:06.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Relative entropy for coherent states from Araki formula
title Relative entropy for coherent states from Araki formula
spellingShingle Relative entropy for coherent states from Araki formula
Casini, Horacio German
Relative entropy
Modular Theory
Coherent states
title_short Relative entropy for coherent states from Araki formula
title_full Relative entropy for coherent states from Araki formula
title_fullStr Relative entropy for coherent states from Araki formula
title_full_unstemmed Relative entropy for coherent states from Araki formula
title_sort Relative entropy for coherent states from Araki formula
dc.creator.none.fl_str_mv Casini, Horacio German
Grillo, Sergio Daniel
Pontello, Diego Esteban
author Casini, Horacio German
author_facet Casini, Horacio German
Grillo, Sergio Daniel
Pontello, Diego Esteban
author_role author
author2 Grillo, Sergio Daniel
Pontello, Diego Esteban
author2_role author
author
dc.subject.none.fl_str_mv Relative entropy
Modular Theory
Coherent states
topic Relative entropy
Modular Theory
Coherent states
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We make a rigorous computation of the relative entropy between the vacuum state and a coherent state for a free scalar in the framework of algebraic description of quantum field theory (AQFT). We study the case of the Rindler wedge. Previous calculations including path integral methods and computations from the lattice give a result for such relative entropy which involves integrals of expectation values of the energy-momentum stress tensor along the considered region. However, the stress tensor is in general nonunique. That means that if we start with some stress tensor, then we can "improve" it adding a conserved term without modifying the Poincaré charges. On the other hand, the presence of such an improving term affects the naive expectation for the relative entropy by a nonvanishing boundary contribution along the entangling surface. In other words, this means that there is an ambiguity in the usual formula for the relative entropy coming from the nonuniqueness of the stress tensor. The main motivation of this work is to solve this puzzle. We first show that all choices of stress tensor except the canonical one are not allowed by positivity and monotonicity of the relative entropy. Then we fully compute the relative entropy between the vacuum and a coherent state in the framework of AQFT using the Araki formula and the techniques of modular theory. After all, both results coincide and give the usual expression for the relative entropy calculated with the canonical stress tensor.
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description We make a rigorous computation of the relative entropy between the vacuum state and a coherent state for a free scalar in the framework of algebraic description of quantum field theory (AQFT). We study the case of the Rindler wedge. Previous calculations including path integral methods and computations from the lattice give a result for such relative entropy which involves integrals of expectation values of the energy-momentum stress tensor along the considered region. However, the stress tensor is in general nonunique. That means that if we start with some stress tensor, then we can "improve" it adding a conserved term without modifying the Poincaré charges. On the other hand, the presence of such an improving term affects the naive expectation for the relative entropy by a nonvanishing boundary contribution along the entangling surface. In other words, this means that there is an ambiguity in the usual formula for the relative entropy coming from the nonuniqueness of the stress tensor. The main motivation of this work is to solve this puzzle. We first show that all choices of stress tensor except the canonical one are not allowed by positivity and monotonicity of the relative entropy. Then we fully compute the relative entropy between the vacuum and a coherent state in the framework of AQFT using the Araki formula and the techniques of modular theory. After all, both results coincide and give the usual expression for the relative entropy calculated with the canonical stress tensor.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125236
Casini, Horacio German; Grillo, Sergio Daniel; Pontello, Diego Esteban; Relative entropy for coherent states from Araki formula; American Physical Society; Physical Review D; 99; 125020; 28-6-2019; 1-26
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125236
identifier_str_mv Casini, Horacio German; Grillo, Sergio Daniel; Pontello, Diego Esteban; Relative entropy for coherent states from Araki formula; American Physical Society; Physical Review D; 99; 125020; 28-6-2019; 1-26
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.125020
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.99.125020
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.00109
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606150936788992
score 13.001348