Metrics in the sphere of a Hilbert C*-module

Autores
Andruchow, Esteban; Varela, Alejandro
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a unital C∗-algebra A and a right C∗-module X over A, we consider the problem of finding short smooth curves in the sphere SX = {x ∈ X :( x, x) = 1}. Curves in SX are measured considering the Finsler metric which consists of the norm of X at each tangent space of SX, The initial x0 ∈ Sx and any tangent vector υ at x0, there exists a curve γ(t)=e^tZ(x0), Z ∈ LA(X), Z*=-Z and ∥Z∥ ≤ π, such that γ(0)=υ, which is minimizing along its path for t ∈ [0,1]. the existence of such Z is linked to the extension problem of selfadjoint operators. Such minimal curves need not be unique. Also we consider the boundary value problem given x0, x1 ∈ SX , find a curve of minimal length which joins them. We give several partial answers to this question. For instance, let us denote by ƒ0 the selfadjoint projection I − x0 ⊗ x0, if the algebra ƒ0LA(X)ƒ0 is finite dimensional, then there exists a curve γ, which is minimizing along its path.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
C*MODULES
SPHERES
GEODESICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101032

id CONICETDig_0e330f9bc5a96979e69dca41534bb1b0
oai_identifier_str oai:ri.conicet.gov.ar:11336/101032
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Metrics in the sphere of a Hilbert C*-moduleAndruchow, EstebanVarela, AlejandroC*MODULESSPHERESGEODESICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a unital C∗-algebra A and a right C∗-module X over A, we consider the problem of finding short smooth curves in the sphere SX = {x ∈ X :( x, x) = 1}. Curves in SX are measured considering the Finsler metric which consists of the norm of X at each tangent space of SX, The initial x0 ∈ Sx and any tangent vector υ at x0, there exists a curve γ(t)=e^tZ(x0), Z ∈ LA(X), Z*=-Z and ∥Z∥ ≤ π, such that γ(0)=υ, which is minimizing along its path for t ∈ [0,1]. the existence of such Z is linked to the extension problem of selfadjoint operators. Such minimal curves need not be unique. Also we consider the boundary value problem given x0, x1 ∈ SX , find a curve of minimal length which joins them. We give several partial answers to this question. For instance, let us denote by ƒ0 the selfadjoint projection I − x0 ⊗ x0, if the algebra ƒ0LA(X)ƒ0 is finite dimensional, then there exists a curve γ, which is minimizing along its path.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaVersita2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101032Andruchow, Esteban; Varela, Alejandro; Metrics in the sphere of a Hilbert C*-module; Versita; Central European Journal of Mathematics - (Online); 5; 4; 12-2007; 639-6531895-10741644-3616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-007-0025-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/journal/11533/5/4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:38Zoai:ri.conicet.gov.ar:11336/101032instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:38.825CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Metrics in the sphere of a Hilbert C*-module
title Metrics in the sphere of a Hilbert C*-module
spellingShingle Metrics in the sphere of a Hilbert C*-module
Andruchow, Esteban
C*MODULES
SPHERES
GEODESICS
title_short Metrics in the sphere of a Hilbert C*-module
title_full Metrics in the sphere of a Hilbert C*-module
title_fullStr Metrics in the sphere of a Hilbert C*-module
title_full_unstemmed Metrics in the sphere of a Hilbert C*-module
title_sort Metrics in the sphere of a Hilbert C*-module
dc.creator.none.fl_str_mv Andruchow, Esteban
Varela, Alejandro
author Andruchow, Esteban
author_facet Andruchow, Esteban
Varela, Alejandro
author_role author
author2 Varela, Alejandro
author2_role author
dc.subject.none.fl_str_mv C*MODULES
SPHERES
GEODESICS
topic C*MODULES
SPHERES
GEODESICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a unital C∗-algebra A and a right C∗-module X over A, we consider the problem of finding short smooth curves in the sphere SX = {x ∈ X :( x, x) = 1}. Curves in SX are measured considering the Finsler metric which consists of the norm of X at each tangent space of SX, The initial x0 ∈ Sx and any tangent vector υ at x0, there exists a curve γ(t)=e^tZ(x0), Z ∈ LA(X), Z*=-Z and ∥Z∥ ≤ π, such that γ(0)=υ, which is minimizing along its path for t ∈ [0,1]. the existence of such Z is linked to the extension problem of selfadjoint operators. Such minimal curves need not be unique. Also we consider the boundary value problem given x0, x1 ∈ SX , find a curve of minimal length which joins them. We give several partial answers to this question. For instance, let us denote by ƒ0 the selfadjoint projection I − x0 ⊗ x0, if the algebra ƒ0LA(X)ƒ0 is finite dimensional, then there exists a curve γ, which is minimizing along its path.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description Given a unital C∗-algebra A and a right C∗-module X over A, we consider the problem of finding short smooth curves in the sphere SX = {x ∈ X :( x, x) = 1}. Curves in SX are measured considering the Finsler metric which consists of the norm of X at each tangent space of SX, The initial x0 ∈ Sx and any tangent vector υ at x0, there exists a curve γ(t)=e^tZ(x0), Z ∈ LA(X), Z*=-Z and ∥Z∥ ≤ π, such that γ(0)=υ, which is minimizing along its path for t ∈ [0,1]. the existence of such Z is linked to the extension problem of selfadjoint operators. Such minimal curves need not be unique. Also we consider the boundary value problem given x0, x1 ∈ SX , find a curve of minimal length which joins them. We give several partial answers to this question. For instance, let us denote by ƒ0 the selfadjoint projection I − x0 ⊗ x0, if the algebra ƒ0LA(X)ƒ0 is finite dimensional, then there exists a curve γ, which is minimizing along its path.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101032
Andruchow, Esteban; Varela, Alejandro; Metrics in the sphere of a Hilbert C*-module; Versita; Central European Journal of Mathematics - (Online); 5; 4; 12-2007; 639-653
1895-1074
1644-3616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101032
identifier_str_mv Andruchow, Esteban; Varela, Alejandro; Metrics in the sphere of a Hilbert C*-module; Versita; Central European Journal of Mathematics - (Online); 5; 4; 12-2007; 639-653
1895-1074
1644-3616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-007-0025-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/journal/11533/5/4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Versita
publisher.none.fl_str_mv Versita
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269866998890496
score 13.13397