States with equivalent supports

Autores
Andruchow, Esteban; Varela, Alejandro
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let B be a von Neumann algebra and X a C* Hilbert B-module. If  p ∈ B is a projection, denote by S_p(X) ={x ∈ X(x,x) =p}, the p-sphere of X. For φ a state of B with support p  ∈ B and x ∈ S_p(X), consider the state φ_x of L_B(X) given by φ_x(t)=φ((x,t(x))). In this paper we study certain sets associated to these states, and examine their topologic properties. As an application of these techniques, we prove that the space of states of the hyperfinite II_1 factor R_0, with support equivalent to a given projection p ∈ R_0, regarded with the norm topology (of the conjugate space of R_0), has trivial homotopy groups of all orders.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
STATE SPACE
C*-MODULE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106949

id CONICETDig_46c308505d06a58a4a54faf5829289db
oai_identifier_str oai:ri.conicet.gov.ar:11336/106949
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling States with equivalent supportsAndruchow, EstebanVarela, AlejandroSTATE SPACEC*-MODULEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let B be a von Neumann algebra and X a C* Hilbert B-module. If  p ∈ B is a projection, denote by S_p(X) ={x ∈ X(x,x) =p}, the p-sphere of X. For φ a state of B with support p  ∈ B and x ∈ S_p(X), consider the state φ_x of L_B(X) given by φ_x(t)=φ((x,t(x))). In this paper we study certain sets associated to these states, and examine their topologic properties. As an application of these techniques, we prove that the space of states of the hyperfinite II_1 factor R_0, with support equivalent to a given projection p ∈ R_0, regarded with the norm topology (of the conjugate space of R_0), has trivial homotopy groups of all orders.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaTheta Foundation2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106949Andruchow, Esteban; Varela, Alejandro; States with equivalent supports; Theta Foundation; Journal Of Operator Theory; 53; 1; 12-2005; 35-480379-4024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2005-053-001/2005-053-001-002.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:52:44Zoai:ri.conicet.gov.ar:11336/106949instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:52:44.656CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv States with equivalent supports
title States with equivalent supports
spellingShingle States with equivalent supports
Andruchow, Esteban
STATE SPACE
C*-MODULE
title_short States with equivalent supports
title_full States with equivalent supports
title_fullStr States with equivalent supports
title_full_unstemmed States with equivalent supports
title_sort States with equivalent supports
dc.creator.none.fl_str_mv Andruchow, Esteban
Varela, Alejandro
author Andruchow, Esteban
author_facet Andruchow, Esteban
Varela, Alejandro
author_role author
author2 Varela, Alejandro
author2_role author
dc.subject.none.fl_str_mv STATE SPACE
C*-MODULE
topic STATE SPACE
C*-MODULE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let B be a von Neumann algebra and X a C* Hilbert B-module. If  p ∈ B is a projection, denote by S_p(X) ={x ∈ X(x,x) =p}, the p-sphere of X. For φ a state of B with support p  ∈ B and x ∈ S_p(X), consider the state φ_x of L_B(X) given by φ_x(t)=φ((x,t(x))). In this paper we study certain sets associated to these states, and examine their topologic properties. As an application of these techniques, we prove that the space of states of the hyperfinite II_1 factor R_0, with support equivalent to a given projection p ∈ R_0, regarded with the norm topology (of the conjugate space of R_0), has trivial homotopy groups of all orders.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description Let B be a von Neumann algebra and X a C* Hilbert B-module. If  p ∈ B is a projection, denote by S_p(X) ={x ∈ X(x,x) =p}, the p-sphere of X. For φ a state of B with support p  ∈ B and x ∈ S_p(X), consider the state φ_x of L_B(X) given by φ_x(t)=φ((x,t(x))). In this paper we study certain sets associated to these states, and examine their topologic properties. As an application of these techniques, we prove that the space of states of the hyperfinite II_1 factor R_0, with support equivalent to a given projection p ∈ R_0, regarded with the norm topology (of the conjugate space of R_0), has trivial homotopy groups of all orders.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106949
Andruchow, Esteban; Varela, Alejandro; States with equivalent supports; Theta Foundation; Journal Of Operator Theory; 53; 1; 12-2005; 35-48
0379-4024
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106949
identifier_str_mv Andruchow, Esteban; Varela, Alejandro; States with equivalent supports; Theta Foundation; Journal Of Operator Theory; 53; 1; 12-2005; 35-48
0379-4024
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2005-053-001/2005-053-001-002.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Theta Foundation
publisher.none.fl_str_mv Theta Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782220551847936
score 12.982451