The canonical intensive quality of a cohesive topos
- Autores
- Marmolejo, Francisco; Menni, Matías
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L.This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical.To illustrate this phenomenon, and also the subtle passage from E to L,we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites fortheir associated categories L.
Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México
Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
Topos Theory
Axiomatic Cohesion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/164666
Ver los metadatos del registro completo
id |
CONICETDig_09d4eaaf90d790391c60d458ea4c1f2a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/164666 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The canonical intensive quality of a cohesive toposMarmolejo, FranciscoMenni, MatíasTopos TheoryAxiomatic Cohesionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L.This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical.To illustrate this phenomenon, and also the subtle passage from E to L,we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites fortheir associated categories L.Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; MéxicoFil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaTheory And Applications Of Categories2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/164666Marmolejo, Francisco; Menni, Matías; The canonical intensive quality of a cohesive topos; Theory And Applications Of Categories; Theory And Applications Of Categories; 36; 9; 10-2021; 250-2791201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/36/9/36-09abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:46Zoai:ri.conicet.gov.ar:11336/164666instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:46.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The canonical intensive quality of a cohesive topos |
title |
The canonical intensive quality of a cohesive topos |
spellingShingle |
The canonical intensive quality of a cohesive topos Marmolejo, Francisco Topos Theory Axiomatic Cohesion |
title_short |
The canonical intensive quality of a cohesive topos |
title_full |
The canonical intensive quality of a cohesive topos |
title_fullStr |
The canonical intensive quality of a cohesive topos |
title_full_unstemmed |
The canonical intensive quality of a cohesive topos |
title_sort |
The canonical intensive quality of a cohesive topos |
dc.creator.none.fl_str_mv |
Marmolejo, Francisco Menni, Matías |
author |
Marmolejo, Francisco |
author_facet |
Marmolejo, Francisco Menni, Matías |
author_role |
author |
author2 |
Menni, Matías |
author2_role |
author |
dc.subject.none.fl_str_mv |
Topos Theory Axiomatic Cohesion |
topic |
Topos Theory Axiomatic Cohesion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L.This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical.To illustrate this phenomenon, and also the subtle passage from E to L,we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites fortheir associated categories L. Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L.This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical.To illustrate this phenomenon, and also the subtle passage from E to L,we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites fortheir associated categories L. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/164666 Marmolejo, Francisco; Menni, Matías; The canonical intensive quality of a cohesive topos; Theory And Applications Of Categories; Theory And Applications Of Categories; 36; 9; 10-2021; 250-279 1201-561X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/164666 |
identifier_str_mv |
Marmolejo, Francisco; Menni, Matías; The canonical intensive quality of a cohesive topos; Theory And Applications Of Categories; Theory And Applications Of Categories; 36; 9; 10-2021; 250-279 1201-561X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/36/9/36-09abs.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Theory And Applications Of Categories |
publisher.none.fl_str_mv |
Theory And Applications Of Categories |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269181177757696 |
score |
13.13397 |