A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
- Autores
- Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden.
Fil: Lerner, Andrei K.. University Bar-llan; Israel
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España - Materia
-
CalderÓN-Zygmund Operators
Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80685
Ver los metadatos del registro completo
id |
CONICETDig_fa1929aa03d7988b50cfeedf9f5113e3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80685 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and WheedenLerner, Andrei K.Ombrosi, Sheldy JavierPérez, CarlosCalderÓN-Zygmund OperatorsWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden.Fil: Lerner, Andrei K.. University Bar-llan; IsraelFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad de Sevilla; EspañaInternational Press Boston2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80685Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden; International Press Boston; Mathematical Research Letters; 16; 1; 12-2009; 149-1561073-27801945-001XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0016/0001/a014/index.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.4310/MRL.2009.v16.n1.a14info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:08Zoai:ri.conicet.gov.ar:11336/80685instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:08.891CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden |
title |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden |
spellingShingle |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden Lerner, Andrei K. CalderÓN-Zygmund Operators Weights |
title_short |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden |
title_full |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden |
title_fullStr |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden |
title_full_unstemmed |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden |
title_sort |
A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden |
dc.creator.none.fl_str_mv |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos |
author |
Lerner, Andrei K. |
author_facet |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos |
author_role |
author |
author2 |
Ombrosi, Sheldy Javier Pérez, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CalderÓN-Zygmund Operators Weights |
topic |
CalderÓN-Zygmund Operators Weights |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden. Fil: Lerner, Andrei K.. University Bar-llan; Israel Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Pérez, Carlos. Universidad de Sevilla; España |
description |
We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80685 Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden; International Press Boston; Mathematical Research Letters; 16; 1; 12-2009; 149-156 1073-2780 1945-001X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80685 |
identifier_str_mv |
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden; International Press Boston; Mathematical Research Letters; 16; 1; 12-2009; 149-156 1073-2780 1945-001X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0016/0001/a014/index.html info:eu-repo/semantics/altIdentifier/doi/10.4310/MRL.2009.v16.n1.a14 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613865623519232 |
score |
13.070432 |