A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden

Autores
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden.
Fil: Lerner, Andrei K.. University Bar-llan; Israel
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España
Materia
CalderÓN-Zygmund Operators
Weights
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80685

id CONICETDig_fa1929aa03d7988b50cfeedf9f5113e3
oai_identifier_str oai:ri.conicet.gov.ar:11336/80685
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and WheedenLerner, Andrei K.Ombrosi, Sheldy JavierPérez, CarlosCalderÓN-Zygmund OperatorsWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden.Fil: Lerner, Andrei K.. University Bar-llan; IsraelFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad de Sevilla; EspañaInternational Press Boston2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80685Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden; International Press Boston; Mathematical Research Letters; 16; 1; 12-2009; 149-1561073-27801945-001XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0016/0001/a014/index.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.4310/MRL.2009.v16.n1.a14info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:08Zoai:ri.conicet.gov.ar:11336/80685instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:08.891CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
title A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
spellingShingle A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
Lerner, Andrei K.
CalderÓN-Zygmund Operators
Weights
title_short A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
title_full A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
title_fullStr A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
title_full_unstemmed A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
title_sort A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden
dc.creator.none.fl_str_mv Lerner, Andrei K.
Ombrosi, Sheldy Javier
Pérez, Carlos
author Lerner, Andrei K.
author_facet Lerner, Andrei K.
Ombrosi, Sheldy Javier
Pérez, Carlos
author_role author
author2 Ombrosi, Sheldy Javier
Pérez, Carlos
author2_role author
author
dc.subject.none.fl_str_mv CalderÓN-Zygmund Operators
Weights
topic CalderÓN-Zygmund Operators
Weights
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden.
Fil: Lerner, Andrei K.. University Bar-llan; Israel
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España
description We obtain an Lp(ω) bound for Calderón-Zygmund operators T when w∈ A1. This bound is sharp both with respect to ||ω||A1 and with respect to p. As a result, we get a new L1,∞°(ω) estimate for T related to a problem of Muckenhoupt and Wheeden.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80685
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden; International Press Boston; Mathematical Research Letters; 16; 1; 12-2009; 149-156
1073-2780
1945-001X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80685
identifier_str_mv Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden; International Press Boston; Mathematical Research Letters; 16; 1; 12-2009; 149-156
1073-2780
1945-001X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0016/0001/a014/index.html
info:eu-repo/semantics/altIdentifier/doi/10.4310/MRL.2009.v16.n1.a14
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv International Press Boston
publisher.none.fl_str_mv International Press Boston
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613865623519232
score 13.070432