New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
- Autores
- Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.
Fil: Lerner, Andrei K.. Universidad de Sevilla; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España
Fil: Torres, Rodolfo. University of Kansas; Estados Unidos
Fil: Trujillo Gonzalez, Rodrigo. Universidad de La Laguna; España - Materia
-
CalderÓN-Zygmund Theory
Commutators
Maximal Operators
Multilinear Singular Integrals
Weighted Norm Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79548
Ver los metadatos del registro completo
| id |
CONICETDig_a01f26665c92e4bb8d111d2a83dff8e5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79548 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theoryLerner, Andrei K.Ombrosi, Sheldy JavierPérez, CarlosTorres, RodolfoTrujillo Gonzalez, RodrigoCalderÓN-Zygmund TheoryCommutatorsMaximal OperatorsMultilinear Singular IntegralsWeighted Norm Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.Fil: Lerner, Andrei K.. Universidad de Sevilla; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad de Sevilla; EspañaFil: Torres, Rodolfo. University of Kansas; Estados UnidosFil: Trujillo Gonzalez, Rodrigo. Universidad de La Laguna; EspañaAcademic Press Inc Elsevier Science2009-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79548Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo; New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory; Academic Press Inc Elsevier Science; Advances in Mathematics; 220; 4; 1-3-2009; 1222-12640001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870808003198info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2008.10.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:42:16Zoai:ri.conicet.gov.ar:11336/79548instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:42:16.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory |
| title |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory |
| spellingShingle |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory Lerner, Andrei K. CalderÓN-Zygmund Theory Commutators Maximal Operators Multilinear Singular Integrals Weighted Norm Inequalities |
| title_short |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory |
| title_full |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory |
| title_fullStr |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory |
| title_full_unstemmed |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory |
| title_sort |
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory |
| dc.creator.none.fl_str_mv |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos Torres, Rodolfo Trujillo Gonzalez, Rodrigo |
| author |
Lerner, Andrei K. |
| author_facet |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos Torres, Rodolfo Trujillo Gonzalez, Rodrigo |
| author_role |
author |
| author2 |
Ombrosi, Sheldy Javier Pérez, Carlos Torres, Rodolfo Trujillo Gonzalez, Rodrigo |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
CalderÓN-Zygmund Theory Commutators Maximal Operators Multilinear Singular Integrals Weighted Norm Inequalities |
| topic |
CalderÓN-Zygmund Theory Commutators Maximal Operators Multilinear Singular Integrals Weighted Norm Inequalities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators. Fil: Lerner, Andrei K.. Universidad de Sevilla; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Pérez, Carlos. Universidad de Sevilla; España Fil: Torres, Rodolfo. University of Kansas; Estados Unidos Fil: Trujillo Gonzalez, Rodrigo. Universidad de La Laguna; España |
| description |
A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-03-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79548 Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo; New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory; Academic Press Inc Elsevier Science; Advances in Mathematics; 220; 4; 1-3-2009; 1222-1264 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/79548 |
| identifier_str_mv |
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo; New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory; Academic Press Inc Elsevier Science; Advances in Mathematics; 220; 4; 1-3-2009; 1222-1264 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870808003198 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2008.10.014 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978121012183040 |
| score |
13.087074 |