New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory

Autores
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.
Fil: Lerner, Andrei K.. Universidad de Sevilla; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España
Fil: Torres, Rodolfo. University of Kansas; Estados Unidos
Fil: Trujillo Gonzalez, Rodrigo. Universidad de La Laguna; España
Materia
CalderÓN-Zygmund Theory
Commutators
Maximal Operators
Multilinear Singular Integrals
Weighted Norm Inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79548

id CONICETDig_a01f26665c92e4bb8d111d2a83dff8e5
oai_identifier_str oai:ri.conicet.gov.ar:11336/79548
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New maximal functions and multiple weights for the multilinear Calderón-Zygmund theoryLerner, Andrei K.Ombrosi, Sheldy JavierPérez, CarlosTorres, RodolfoTrujillo Gonzalez, RodrigoCalderÓN-Zygmund TheoryCommutatorsMaximal OperatorsMultilinear Singular IntegralsWeighted Norm Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.Fil: Lerner, Andrei K.. Universidad de Sevilla; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad de Sevilla; EspañaFil: Torres, Rodolfo. University of Kansas; Estados UnidosFil: Trujillo Gonzalez, Rodrigo. Universidad de La Laguna; EspañaAcademic Press Inc Elsevier Science2009-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79548Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo; New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory; Academic Press Inc Elsevier Science; Advances in Mathematics; 220; 4; 1-3-2009; 1222-12640001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870808003198info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2008.10.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:17Zoai:ri.conicet.gov.ar:11336/79548instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:18.189CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
title New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
spellingShingle New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
Lerner, Andrei K.
CalderÓN-Zygmund Theory
Commutators
Maximal Operators
Multilinear Singular Integrals
Weighted Norm Inequalities
title_short New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
title_full New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
title_fullStr New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
title_full_unstemmed New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
title_sort New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
dc.creator.none.fl_str_mv Lerner, Andrei K.
Ombrosi, Sheldy Javier
Pérez, Carlos
Torres, Rodolfo
Trujillo Gonzalez, Rodrigo
author Lerner, Andrei K.
author_facet Lerner, Andrei K.
Ombrosi, Sheldy Javier
Pérez, Carlos
Torres, Rodolfo
Trujillo Gonzalez, Rodrigo
author_role author
author2 Ombrosi, Sheldy Javier
Pérez, Carlos
Torres, Rodolfo
Trujillo Gonzalez, Rodrigo
author2_role author
author
author
author
dc.subject.none.fl_str_mv CalderÓN-Zygmund Theory
Commutators
Maximal Operators
Multilinear Singular Integrals
Weighted Norm Inequalities
topic CalderÓN-Zygmund Theory
Commutators
Maximal Operators
Multilinear Singular Integrals
Weighted Norm Inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.
Fil: Lerner, Andrei K.. Universidad de Sevilla; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España
Fil: Torres, Rodolfo. University of Kansas; Estados Unidos
Fil: Trujillo Gonzalez, Rodrigo. Universidad de La Laguna; España
description A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.
publishDate 2009
dc.date.none.fl_str_mv 2009-03-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79548
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo; New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory; Academic Press Inc Elsevier Science; Advances in Mathematics; 220; 4; 1-3-2009; 1222-1264
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79548
identifier_str_mv Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo; New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory; Academic Press Inc Elsevier Science; Advances in Mathematics; 220; 4; 1-3-2009; 1222-1264
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870808003198
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2008.10.014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270039395270656
score 12.885934