Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden
- Autores
- Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w.
Fil: Lerner, Andrei K.. Universidad de Sevilla; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España - Materia
-
Calderon
Zygmund Operators
Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79545
Ver los metadatos del registro completo
id |
CONICETDig_807d49c8d2faa5129b48a9c8139f9f38 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79545 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-WheedenLerner, Andrei K.Ombrosi, Sheldy JavierPérez, CarlosCalderonZygmund OperatorsWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w.Fil: Lerner, Andrei K.. Universidad de Sevilla; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad de Sevilla; EspañaBirkhäuser Publishing2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79545Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden; Birkhäuser Publishing; Journal Of Fourier Analysis And Applications; 15; 3; 6-2009; 394-4031069-58691531-5851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-008-9032-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-008-9032-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:21Zoai:ri.conicet.gov.ar:11336/79545instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:22.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
title |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
spellingShingle |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden Lerner, Andrei K. Calderon Zygmund Operators Weights |
title_short |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
title_full |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
title_fullStr |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
title_full_unstemmed |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
title_sort |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
dc.creator.none.fl_str_mv |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos |
author |
Lerner, Andrei K. |
author_facet |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos |
author_role |
author |
author2 |
Ombrosi, Sheldy Javier Pérez, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Calderon Zygmund Operators Weights |
topic |
Calderon Zygmund Operators Weights |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w. Fil: Lerner, Andrei K.. Universidad de Sevilla; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Pérez, Carlos. Universidad de Sevilla; España |
description |
A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79545 Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden; Birkhäuser Publishing; Journal Of Fourier Analysis And Applications; 15; 3; 6-2009; 394-403 1069-5869 1531-5851 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79545 |
identifier_str_mv |
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden; Birkhäuser Publishing; Journal Of Fourier Analysis And Applications; 15; 3; 6-2009; 394-403 1069-5869 1531-5851 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-008-9032-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-008-9032-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhäuser Publishing |
publisher.none.fl_str_mv |
Birkhäuser Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613024961265664 |
score |
13.070432 |