Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden
- Autores
- Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w.
Fil: Lerner, Andrei K.. Universidad de Sevilla; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad de Sevilla; España - Materia
-
Calderon
Zygmund Operators
Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79545
Ver los metadatos del registro completo
| id |
CONICETDig_807d49c8d2faa5129b48a9c8139f9f38 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79545 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-WheedenLerner, Andrei K.Ombrosi, Sheldy JavierPérez, CarlosCalderonZygmund OperatorsWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w.Fil: Lerner, Andrei K.. Universidad de Sevilla; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad de Sevilla; EspañaBirkhäuser Publishing2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79545Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden; Birkhäuser Publishing; Journal Of Fourier Analysis And Applications; 15; 3; 6-2009; 394-4031069-58691531-5851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-008-9032-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-008-9032-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:14:09Zoai:ri.conicet.gov.ar:11336/79545instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:14:10.182CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
| title |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
| spellingShingle |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden Lerner, Andrei K. Calderon Zygmund Operators Weights |
| title_short |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
| title_full |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
| title_fullStr |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
| title_full_unstemmed |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
| title_sort |
Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden |
| dc.creator.none.fl_str_mv |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos |
| author |
Lerner, Andrei K. |
| author_facet |
Lerner, Andrei K. Ombrosi, Sheldy Javier Pérez, Carlos |
| author_role |
author |
| author2 |
Ombrosi, Sheldy Javier Pérez, Carlos |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Calderon Zygmund Operators Weights |
| topic |
Calderon Zygmund Operators Weights |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w. Fil: Lerner, Andrei K.. Universidad de Sevilla; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Pérez, Carlos. Universidad de Sevilla; España |
| description |
A well-known open problem of Muckenhoupt-Wheeden says that any Calderón-Zygmund singular integral operator T is of weak type (1,1) with respect to a couple of weights (w,Mw). In this paper, we consider a somewhat "dual" problem: supλ > 0 λ w {x ∈ ℝn: |Tf(x)|/Mw > λ} ≤ c ∫ℝn |f|,dx. We prove a weaker version of this inequality with M 3 w instead of Mw. Also we study a related question about the behavior of the constant in terms of the A 1 characteristic of w. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79545 Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden; Birkhäuser Publishing; Journal Of Fourier Analysis And Applications; 15; 3; 6-2009; 394-403 1069-5869 1531-5851 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/79545 |
| identifier_str_mv |
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden; Birkhäuser Publishing; Journal Of Fourier Analysis And Applications; 15; 3; 6-2009; 394-403 1069-5869 1531-5851 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-008-9032-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-008-9032-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Birkhäuser Publishing |
| publisher.none.fl_str_mv |
Birkhäuser Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426002224939008 |
| score |
13.10058 |