Almost sure-sign convergence of Hardy-type Dirichlet series
- Autores
- Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Defant, Andreas. Universität Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
Hardy spaces
Dirichlet series
Random series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88537
Ver los metadatos del registro completo
id |
CONICETDig_6bab562425611a9dcd3a2f4a390177d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88537 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Almost sure-sign convergence of Hardy-type Dirichlet seriesCarando, Daniel GermánDefant, AndreasSevilla Peris, PabloHardy spacesDirichlet seriesRandom serieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Defant, Andreas. Universität Oldenburg; AlemaniaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88537Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-2470021-7670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0034-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11854-018-0034-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:56Zoai:ri.conicet.gov.ar:11336/88537instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:57.095CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Almost sure-sign convergence of Hardy-type Dirichlet series |
title |
Almost sure-sign convergence of Hardy-type Dirichlet series |
spellingShingle |
Almost sure-sign convergence of Hardy-type Dirichlet series Carando, Daniel Germán Hardy spaces Dirichlet series Random series |
title_short |
Almost sure-sign convergence of Hardy-type Dirichlet series |
title_full |
Almost sure-sign convergence of Hardy-type Dirichlet series |
title_fullStr |
Almost sure-sign convergence of Hardy-type Dirichlet series |
title_full_unstemmed |
Almost sure-sign convergence of Hardy-type Dirichlet series |
title_sort |
Almost sure-sign convergence of Hardy-type Dirichlet series |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
author_role |
author |
author2 |
Defant, Andreas Sevilla Peris, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hardy spaces Dirichlet series Random series |
topic |
Hardy spaces Dirichlet series Random series |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Defant, Andreas. Universität Oldenburg; Alemania Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España |
description |
Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88537 Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-247 0021-7670 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88537 |
identifier_str_mv |
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-247 0021-7670 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0034-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11854-018-0034-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613901498449920 |
score |
13.070432 |