Almost sure-sign convergence of Hardy-type Dirichlet series
- Autores
- Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Defant, Andreas. Universität Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
Hardy spaces
Dirichlet series
Random series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88537
Ver los metadatos del registro completo
| id |
CONICETDig_6bab562425611a9dcd3a2f4a390177d1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88537 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Almost sure-sign convergence of Hardy-type Dirichlet seriesCarando, Daniel GermánDefant, AndreasSevilla Peris, PabloHardy spacesDirichlet seriesRandom serieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Defant, Andreas. Universität Oldenburg; AlemaniaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88537Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-2470021-7670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0034-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11854-018-0034-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:35:41Zoai:ri.conicet.gov.ar:11336/88537instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:35:41.911CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Almost sure-sign convergence of Hardy-type Dirichlet series |
| title |
Almost sure-sign convergence of Hardy-type Dirichlet series |
| spellingShingle |
Almost sure-sign convergence of Hardy-type Dirichlet series Carando, Daniel Germán Hardy spaces Dirichlet series Random series |
| title_short |
Almost sure-sign convergence of Hardy-type Dirichlet series |
| title_full |
Almost sure-sign convergence of Hardy-type Dirichlet series |
| title_fullStr |
Almost sure-sign convergence of Hardy-type Dirichlet series |
| title_full_unstemmed |
Almost sure-sign convergence of Hardy-type Dirichlet series |
| title_sort |
Almost sure-sign convergence of Hardy-type Dirichlet series |
| dc.creator.none.fl_str_mv |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
| author |
Carando, Daniel Germán |
| author_facet |
Carando, Daniel Germán Defant, Andreas Sevilla Peris, Pablo |
| author_role |
author |
| author2 |
Defant, Andreas Sevilla Peris, Pablo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Hardy spaces Dirichlet series Random series |
| topic |
Hardy spaces Dirichlet series Random series |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Defant, Andreas. Universität Oldenburg; Alemania Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España |
| description |
Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88537 Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-247 0021-7670 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/88537 |
| identifier_str_mv |
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-247 0021-7670 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0034-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11854-018-0034-y |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781992659582976 |
| score |
12.982451 |