Almost sure-sign convergence of Hardy-type Dirichlet series

Autores
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Defant, Andreas. Universität Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
Materia
Hardy spaces
Dirichlet series
Random series
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88537

id CONICETDig_6bab562425611a9dcd3a2f4a390177d1
oai_identifier_str oai:ri.conicet.gov.ar:11336/88537
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Almost sure-sign convergence of Hardy-type Dirichlet seriesCarando, Daniel GermánDefant, AndreasSevilla Peris, PabloHardy spacesDirichlet seriesRandom serieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Defant, Andreas. Universität Oldenburg; AlemaniaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88537Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-2470021-7670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0034-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11854-018-0034-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:56Zoai:ri.conicet.gov.ar:11336/88537instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:57.095CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Almost sure-sign convergence of Hardy-type Dirichlet series
title Almost sure-sign convergence of Hardy-type Dirichlet series
spellingShingle Almost sure-sign convergence of Hardy-type Dirichlet series
Carando, Daniel Germán
Hardy spaces
Dirichlet series
Random series
title_short Almost sure-sign convergence of Hardy-type Dirichlet series
title_full Almost sure-sign convergence of Hardy-type Dirichlet series
title_fullStr Almost sure-sign convergence of Hardy-type Dirichlet series
title_full_unstemmed Almost sure-sign convergence of Hardy-type Dirichlet series
title_sort Almost sure-sign convergence of Hardy-type Dirichlet series
dc.creator.none.fl_str_mv Carando, Daniel Germán
Defant, Andreas
Sevilla Peris, Pablo
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Defant, Andreas
Sevilla Peris, Pablo
author_role author
author2 Defant, Andreas
Sevilla Peris, Pablo
author2_role author
author
dc.subject.none.fl_str_mv Hardy spaces
Dirichlet series
Random series
topic Hardy spaces
Dirichlet series
Random series
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Defant, Andreas. Universität Oldenburg; Alemania
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
description Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88537
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-247
0021-7670
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88537
identifier_str_mv Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Almost sure-sign convergence of Hardy-type Dirichlet series; Springer; Journal d'Analyse Mathématique; 135; 1; 6-2018; 225-247
0021-7670
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-018-0034-y
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11854-018-0034-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613901498449920
score 13.070432