Decompositions and complexifications of some infinite-dimensional homogeneous spaces

Autores
Miglioli, Martín Carlos
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper an extended Corach-Porta-Recht decomposition theorem for Finsler symmetric spaces of semi-negative curvature in the context of reductive structures is proven. This decomposition theorem is applied to give a geometric description of the complexification of some infinite dimensional homogeneous spaces.
Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Banach-Lie group
Complexification
Corach-Porta-Recht decomposition
Finsler structure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18942

id CONICETDig_f93aebf2c440f9c9b2789afb2e94e227
oai_identifier_str oai:ri.conicet.gov.ar:11336/18942
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decompositions and complexifications of some infinite-dimensional homogeneous spacesMiglioli, Martín CarlosBanach-Lie groupComplexificationCorach-Porta-Recht decompositionFinsler structurehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper an extended Corach-Porta-Recht decomposition theorem for Finsler symmetric spaces of semi-negative curvature in the context of reductive structures is proven. This decomposition theorem is applied to give a geometric description of the complexification of some infinite dimensional homogeneous spaces.Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2014-03-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18942Miglioli, Martín Carlos; Decompositions and complexifications of some infinite-dimensional homogeneous spaces; Elsevier; Journal Of Functional Analysis; 266; 11; 27-3-2014; 6599-66180022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123614001177info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2014.03.006info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1307.1138.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:02Zoai:ri.conicet.gov.ar:11336/18942instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:02.58CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decompositions and complexifications of some infinite-dimensional homogeneous spaces
title Decompositions and complexifications of some infinite-dimensional homogeneous spaces
spellingShingle Decompositions and complexifications of some infinite-dimensional homogeneous spaces
Miglioli, Martín Carlos
Banach-Lie group
Complexification
Corach-Porta-Recht decomposition
Finsler structure
title_short Decompositions and complexifications of some infinite-dimensional homogeneous spaces
title_full Decompositions and complexifications of some infinite-dimensional homogeneous spaces
title_fullStr Decompositions and complexifications of some infinite-dimensional homogeneous spaces
title_full_unstemmed Decompositions and complexifications of some infinite-dimensional homogeneous spaces
title_sort Decompositions and complexifications of some infinite-dimensional homogeneous spaces
dc.creator.none.fl_str_mv Miglioli, Martín Carlos
author Miglioli, Martín Carlos
author_facet Miglioli, Martín Carlos
author_role author
dc.subject.none.fl_str_mv Banach-Lie group
Complexification
Corach-Porta-Recht decomposition
Finsler structure
topic Banach-Lie group
Complexification
Corach-Porta-Recht decomposition
Finsler structure
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper an extended Corach-Porta-Recht decomposition theorem for Finsler symmetric spaces of semi-negative curvature in the context of reductive structures is proven. This decomposition theorem is applied to give a geometric description of the complexification of some infinite dimensional homogeneous spaces.
Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description In this paper an extended Corach-Porta-Recht decomposition theorem for Finsler symmetric spaces of semi-negative curvature in the context of reductive structures is proven. This decomposition theorem is applied to give a geometric description of the complexification of some infinite dimensional homogeneous spaces.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18942
Miglioli, Martín Carlos; Decompositions and complexifications of some infinite-dimensional homogeneous spaces; Elsevier; Journal Of Functional Analysis; 266; 11; 27-3-2014; 6599-6618
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18942
identifier_str_mv Miglioli, Martín Carlos; Decompositions and complexifications of some infinite-dimensional homogeneous spaces; Elsevier; Journal Of Functional Analysis; 266; 11; 27-3-2014; 6599-6618
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123614001177
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2014.03.006
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1307.1138.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614452445446144
score 13.070432