On the structure group of an infinite dimensional JB-algebra
- Autores
- Larotonda, Gabriel Andrés; Luna, Jose Alejandro
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We extend several results for the structure group of a real Jordan algebra V, to the setting of infinite dimensional JB-algebras. We prove that the structure group Str(V), the cone preserving group G(Ω) and the automorphism group Aut(V) of the algebra V are embedded Banach-Lie groups of GL(V), and that each of the inclusions Aut(V)⊂G(Ω)⊂Str(V) are of embedded Banach-Lie subgroups. We give a full description of the components of Str(V) via cones, isotopes and central projections. We apply these results to V=B(H)sa the special JB-algebra of self-adjoint operators on an infinite dimensional complex Hilbert space, describing the groups Str(V),G(Ω),Aut(V), their Banach-Lie algebras and their connected components. We show that the action of the unitary group of H on Aut(V) has smooth local cross sections, thus Aut(V) is a smooth principal bundle over the unitary group, with circle structure group S1.
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Luna, Jose Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
AUTOMORPHISM GROUP
BANACH-LIE GROUP
JB-ALGEBRA
JORDAN ALGEBRA
QUADRATIC REPRESENTATION
STRUCTURE GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212088
Ver los metadatos del registro completo
| id |
CONICETDig_0972b3fea893553c0b0a3af3a1fdb63b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212088 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the structure group of an infinite dimensional JB-algebraLarotonda, Gabriel AndrésLuna, Jose AlejandroAUTOMORPHISM GROUPBANACH-LIE GROUPJB-ALGEBRAJORDAN ALGEBRAQUADRATIC REPRESENTATIONSTRUCTURE GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We extend several results for the structure group of a real Jordan algebra V, to the setting of infinite dimensional JB-algebras. We prove that the structure group Str(V), the cone preserving group G(Ω) and the automorphism group Aut(V) of the algebra V are embedded Banach-Lie groups of GL(V), and that each of the inclusions Aut(V)⊂G(Ω)⊂Str(V) are of embedded Banach-Lie subgroups. We give a full description of the components of Str(V) via cones, isotopes and central projections. We apply these results to V=B(H)sa the special JB-algebra of self-adjoint operators on an infinite dimensional complex Hilbert space, describing the groups Str(V),G(Ω),Aut(V), their Banach-Lie algebras and their connected components. We show that the action of the unitary group of H on Aut(V) has smooth local cross sections, thus Aut(V) is a smooth principal bundle over the unitary group, with circle structure group S1.Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Luna, Jose Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212088Larotonda, Gabriel Andrés; Luna, Jose Alejandro; On the structure group of an infinite dimensional JB-algebra; Academic Press Inc Elsevier Science; Journal of Algebra; 622; 5-2023; 366-4030021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2023.02.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869323000509info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2206.05320info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:50:46Zoai:ri.conicet.gov.ar:11336/212088instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:50:46.483CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the structure group of an infinite dimensional JB-algebra |
| title |
On the structure group of an infinite dimensional JB-algebra |
| spellingShingle |
On the structure group of an infinite dimensional JB-algebra Larotonda, Gabriel Andrés AUTOMORPHISM GROUP BANACH-LIE GROUP JB-ALGEBRA JORDAN ALGEBRA QUADRATIC REPRESENTATION STRUCTURE GROUP |
| title_short |
On the structure group of an infinite dimensional JB-algebra |
| title_full |
On the structure group of an infinite dimensional JB-algebra |
| title_fullStr |
On the structure group of an infinite dimensional JB-algebra |
| title_full_unstemmed |
On the structure group of an infinite dimensional JB-algebra |
| title_sort |
On the structure group of an infinite dimensional JB-algebra |
| dc.creator.none.fl_str_mv |
Larotonda, Gabriel Andrés Luna, Jose Alejandro |
| author |
Larotonda, Gabriel Andrés |
| author_facet |
Larotonda, Gabriel Andrés Luna, Jose Alejandro |
| author_role |
author |
| author2 |
Luna, Jose Alejandro |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
AUTOMORPHISM GROUP BANACH-LIE GROUP JB-ALGEBRA JORDAN ALGEBRA QUADRATIC REPRESENTATION STRUCTURE GROUP |
| topic |
AUTOMORPHISM GROUP BANACH-LIE GROUP JB-ALGEBRA JORDAN ALGEBRA QUADRATIC REPRESENTATION STRUCTURE GROUP |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We extend several results for the structure group of a real Jordan algebra V, to the setting of infinite dimensional JB-algebras. We prove that the structure group Str(V), the cone preserving group G(Ω) and the automorphism group Aut(V) of the algebra V are embedded Banach-Lie groups of GL(V), and that each of the inclusions Aut(V)⊂G(Ω)⊂Str(V) are of embedded Banach-Lie subgroups. We give a full description of the components of Str(V) via cones, isotopes and central projections. We apply these results to V=B(H)sa the special JB-algebra of self-adjoint operators on an infinite dimensional complex Hilbert space, describing the groups Str(V),G(Ω),Aut(V), their Banach-Lie algebras and their connected components. We show that the action of the unitary group of H on Aut(V) has smooth local cross sections, thus Aut(V) is a smooth principal bundle over the unitary group, with circle structure group S1. Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Luna, Jose Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
We extend several results for the structure group of a real Jordan algebra V, to the setting of infinite dimensional JB-algebras. We prove that the structure group Str(V), the cone preserving group G(Ω) and the automorphism group Aut(V) of the algebra V are embedded Banach-Lie groups of GL(V), and that each of the inclusions Aut(V)⊂G(Ω)⊂Str(V) are of embedded Banach-Lie subgroups. We give a full description of the components of Str(V) via cones, isotopes and central projections. We apply these results to V=B(H)sa the special JB-algebra of self-adjoint operators on an infinite dimensional complex Hilbert space, describing the groups Str(V),G(Ω),Aut(V), their Banach-Lie algebras and their connected components. We show that the action of the unitary group of H on Aut(V) has smooth local cross sections, thus Aut(V) is a smooth principal bundle over the unitary group, with circle structure group S1. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212088 Larotonda, Gabriel Andrés; Luna, Jose Alejandro; On the structure group of an infinite dimensional JB-algebra; Academic Press Inc Elsevier Science; Journal of Algebra; 622; 5-2023; 366-403 0021-8693 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/212088 |
| identifier_str_mv |
Larotonda, Gabriel Andrés; Luna, Jose Alejandro; On the structure group of an infinite dimensional JB-algebra; Academic Press Inc Elsevier Science; Journal of Algebra; 622; 5-2023; 366-403 0021-8693 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2023.02.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869323000509 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2206.05320 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598120825356288 |
| score |
13.24222 |