Operator inequalities related to the Corach–Porta–Recht inequality

Autores
Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions.
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán
Fil: Seddik, Ameur. Tabuk Universit; Arabia Saudita
Materia
CORACH-PORTA-RECHT INEQUALITY
HEINZ INEQUALITY
INVERTIBLE OPERATOR
OPERATOR INEQUALITY
UNITARILY INVARIANT NORM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17869

id CONICETDig_c41cbd524ef7b977de693fafa9076f76
oai_identifier_str oai:ri.conicet.gov.ar:11336/17869
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Operator inequalities related to the Corach–Porta–Recht inequalityConde, Cristian MarceloMoslehian, Mohammad SalSeddik, AmeurCORACH-PORTA-RECHT INEQUALITYHEINZ INEQUALITYINVERTIBLE OPERATOROPERATOR INEQUALITYUNITARILY INVARIANT NORMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions.Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; IránFil: Seddik, Ameur. Tabuk Universit; Arabia SauditaElsevier Science Inc2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17869Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur; Operator inequalities related to the Corach–Porta–Recht inequality; Elsevier Science Inc; Linear Algebra and its Applications; 436; 9; 5-2012; 3008-30170024-3795enginfo:eu-repo/semantics/altIdentifier/ark/https://arxiv.org/abs/1109.1778info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379511006410info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2011.09.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:55Zoai:ri.conicet.gov.ar:11336/17869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:55.421CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Operator inequalities related to the Corach–Porta–Recht inequality
title Operator inequalities related to the Corach–Porta–Recht inequality
spellingShingle Operator inequalities related to the Corach–Porta–Recht inequality
Conde, Cristian Marcelo
CORACH-PORTA-RECHT INEQUALITY
HEINZ INEQUALITY
INVERTIBLE OPERATOR
OPERATOR INEQUALITY
UNITARILY INVARIANT NORM
title_short Operator inequalities related to the Corach–Porta–Recht inequality
title_full Operator inequalities related to the Corach–Porta–Recht inequality
title_fullStr Operator inequalities related to the Corach–Porta–Recht inequality
title_full_unstemmed Operator inequalities related to the Corach–Porta–Recht inequality
title_sort Operator inequalities related to the Corach–Porta–Recht inequality
dc.creator.none.fl_str_mv Conde, Cristian Marcelo
Moslehian, Mohammad Sal
Seddik, Ameur
author Conde, Cristian Marcelo
author_facet Conde, Cristian Marcelo
Moslehian, Mohammad Sal
Seddik, Ameur
author_role author
author2 Moslehian, Mohammad Sal
Seddik, Ameur
author2_role author
author
dc.subject.none.fl_str_mv CORACH-PORTA-RECHT INEQUALITY
HEINZ INEQUALITY
INVERTIBLE OPERATOR
OPERATOR INEQUALITY
UNITARILY INVARIANT NORM
topic CORACH-PORTA-RECHT INEQUALITY
HEINZ INEQUALITY
INVERTIBLE OPERATOR
OPERATOR INEQUALITY
UNITARILY INVARIANT NORM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions.
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán
Fil: Seddik, Ameur. Tabuk Universit; Arabia Saudita
description We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions.
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17869
Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur; Operator inequalities related to the Corach–Porta–Recht inequality; Elsevier Science Inc; Linear Algebra and its Applications; 436; 9; 5-2012; 3008-3017
0024-3795
url http://hdl.handle.net/11336/17869
identifier_str_mv Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur; Operator inequalities related to the Corach–Porta–Recht inequality; Elsevier Science Inc; Linear Algebra and its Applications; 436; 9; 5-2012; 3008-3017
0024-3795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/ark/https://arxiv.org/abs/1109.1778
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379511006410
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2011.09.009
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613294169522176
score 13.070432