Operator inequalities related to the Corach–Porta–Recht inequality
- Autores
- Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions.
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán
Fil: Seddik, Ameur. Tabuk Universit; Arabia Saudita - Materia
-
CORACH-PORTA-RECHT INEQUALITY
HEINZ INEQUALITY
INVERTIBLE OPERATOR
OPERATOR INEQUALITY
UNITARILY INVARIANT NORM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17869
Ver los metadatos del registro completo
id |
CONICETDig_c41cbd524ef7b977de693fafa9076f76 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17869 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Operator inequalities related to the Corach–Porta–Recht inequalityConde, Cristian MarceloMoslehian, Mohammad SalSeddik, AmeurCORACH-PORTA-RECHT INEQUALITYHEINZ INEQUALITYINVERTIBLE OPERATOROPERATOR INEQUALITYUNITARILY INVARIANT NORMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions.Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; IránFil: Seddik, Ameur. Tabuk Universit; Arabia SauditaElsevier Science Inc2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17869Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur; Operator inequalities related to the Corach–Porta–Recht inequality; Elsevier Science Inc; Linear Algebra and its Applications; 436; 9; 5-2012; 3008-30170024-3795enginfo:eu-repo/semantics/altIdentifier/ark/https://arxiv.org/abs/1109.1778info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379511006410info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2011.09.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:55Zoai:ri.conicet.gov.ar:11336/17869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:55.421CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Operator inequalities related to the Corach–Porta–Recht inequality |
title |
Operator inequalities related to the Corach–Porta–Recht inequality |
spellingShingle |
Operator inequalities related to the Corach–Porta–Recht inequality Conde, Cristian Marcelo CORACH-PORTA-RECHT INEQUALITY HEINZ INEQUALITY INVERTIBLE OPERATOR OPERATOR INEQUALITY UNITARILY INVARIANT NORM |
title_short |
Operator inequalities related to the Corach–Porta–Recht inequality |
title_full |
Operator inequalities related to the Corach–Porta–Recht inequality |
title_fullStr |
Operator inequalities related to the Corach–Porta–Recht inequality |
title_full_unstemmed |
Operator inequalities related to the Corach–Porta–Recht inequality |
title_sort |
Operator inequalities related to the Corach–Porta–Recht inequality |
dc.creator.none.fl_str_mv |
Conde, Cristian Marcelo Moslehian, Mohammad Sal Seddik, Ameur |
author |
Conde, Cristian Marcelo |
author_facet |
Conde, Cristian Marcelo Moslehian, Mohammad Sal Seddik, Ameur |
author_role |
author |
author2 |
Moslehian, Mohammad Sal Seddik, Ameur |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CORACH-PORTA-RECHT INEQUALITY HEINZ INEQUALITY INVERTIBLE OPERATOR OPERATOR INEQUALITY UNITARILY INVARIANT NORM |
topic |
CORACH-PORTA-RECHT INEQUALITY HEINZ INEQUALITY INVERTIBLE OPERATOR OPERATOR INEQUALITY UNITARILY INVARIANT NORM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions. Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán Fil: Seddik, Ameur. Tabuk Universit; Arabia Saudita |
description |
We prove some refinements of an inequality due to X. Zhan in an arbitrary complex Hilbert space by using some results on the Heinz inequality. We present several related inequalities as well as new variants of the Corach-Porta-Recht inequality. We also characterize the class of operators satisfying SXS- 1+S- 1XS+kX≥(k+2)X under certain conditions. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17869 Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur; Operator inequalities related to the Corach–Porta–Recht inequality; Elsevier Science Inc; Linear Algebra and its Applications; 436; 9; 5-2012; 3008-3017 0024-3795 |
url |
http://hdl.handle.net/11336/17869 |
identifier_str_mv |
Conde, Cristian Marcelo; Moslehian, Mohammad Sal; Seddik, Ameur; Operator inequalities related to the Corach–Porta–Recht inequality; Elsevier Science Inc; Linear Algebra and its Applications; 436; 9; 5-2012; 3008-3017 0024-3795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/ark/https://arxiv.org/abs/1109.1778 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379511006410 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2011.09.009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613294169522176 |
score |
13.070432 |