Nijenhuis operators on Banach homogeneous spaces

Autores
Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/.
Fil: Golinksi, Tomasz. University Of Bialystok; Polonia
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Tumpach, Alice Barbara. University Of Lille.; Francia
Materia
NIJENHUIS OPERATOR
HOMOGENEOUS SPACE
ALMOST COMPLEX MANIFOLD
BANACH–LIE GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266932

id CONICETDig_bf2c78601d4bed7bce7906d6a32a2214
oai_identifier_str oai:ri.conicet.gov.ar:11336/266932
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nijenhuis operators on Banach homogeneous spacesGolinksi, TomaszLarotonda, Gabriel AndrésTumpach, Alice BarbaraNIJENHUIS OPERATORHOMOGENEOUS SPACEALMOST COMPLEX MANIFOLDBANACH–LIE GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/.Fil: Golinksi, Tomasz. University Of Bialystok; PoloniaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Tumpach, Alice Barbara. University Of Lille.; FranciaEuropean Mathematical Society2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266932Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara; Nijenhuis operators on Banach homogeneous spaces; European Mathematical Society; Rendiconti Lincei-matematica E Applicazioni; 35; 4; 5-2024; 713-7391120-63301720-0768CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/RLM/1057info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/rlm/articles/14298925info:eu-repo/semantics/altIdentifier/url/https://ems.press/content/serial-article-files/50951info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2410.13557info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:03Zoai:ri.conicet.gov.ar:11336/266932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:04.177CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nijenhuis operators on Banach homogeneous spaces
title Nijenhuis operators on Banach homogeneous spaces
spellingShingle Nijenhuis operators on Banach homogeneous spaces
Golinksi, Tomasz
NIJENHUIS OPERATOR
HOMOGENEOUS SPACE
ALMOST COMPLEX MANIFOLD
BANACH–LIE GROUP
title_short Nijenhuis operators on Banach homogeneous spaces
title_full Nijenhuis operators on Banach homogeneous spaces
title_fullStr Nijenhuis operators on Banach homogeneous spaces
title_full_unstemmed Nijenhuis operators on Banach homogeneous spaces
title_sort Nijenhuis operators on Banach homogeneous spaces
dc.creator.none.fl_str_mv Golinksi, Tomasz
Larotonda, Gabriel Andrés
Tumpach, Alice Barbara
author Golinksi, Tomasz
author_facet Golinksi, Tomasz
Larotonda, Gabriel Andrés
Tumpach, Alice Barbara
author_role author
author2 Larotonda, Gabriel Andrés
Tumpach, Alice Barbara
author2_role author
author
dc.subject.none.fl_str_mv NIJENHUIS OPERATOR
HOMOGENEOUS SPACE
ALMOST COMPLEX MANIFOLD
BANACH–LIE GROUP
topic NIJENHUIS OPERATOR
HOMOGENEOUS SPACE
ALMOST COMPLEX MANIFOLD
BANACH–LIE GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/.
Fil: Golinksi, Tomasz. University Of Bialystok; Polonia
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Tumpach, Alice Barbara. University Of Lille.; Francia
description For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266932
Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara; Nijenhuis operators on Banach homogeneous spaces; European Mathematical Society; Rendiconti Lincei-matematica E Applicazioni; 35; 4; 5-2024; 713-739
1120-6330
1720-0768
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266932
identifier_str_mv Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara; Nijenhuis operators on Banach homogeneous spaces; European Mathematical Society; Rendiconti Lincei-matematica E Applicazioni; 35; 4; 5-2024; 713-739
1120-6330
1720-0768
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4171/RLM/1057
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/rlm/articles/14298925
info:eu-repo/semantics/altIdentifier/url/https://ems.press/content/serial-article-files/50951
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2410.13557
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613545495363584
score 13.070432