Nijenhuis operators on Banach homogeneous spaces
- Autores
- Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/.
Fil: Golinksi, Tomasz. University Of Bialystok; Polonia
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Tumpach, Alice Barbara. University Of Lille.; Francia - Materia
-
NIJENHUIS OPERATOR
HOMOGENEOUS SPACE
ALMOST COMPLEX MANIFOLD
BANACH–LIE GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266932
Ver los metadatos del registro completo
| id |
CONICETDig_bf2c78601d4bed7bce7906d6a32a2214 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266932 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Nijenhuis operators on Banach homogeneous spacesGolinksi, TomaszLarotonda, Gabriel AndrésTumpach, Alice BarbaraNIJENHUIS OPERATORHOMOGENEOUS SPACEALMOST COMPLEX MANIFOLDBANACH–LIE GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/.Fil: Golinksi, Tomasz. University Of Bialystok; PoloniaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Tumpach, Alice Barbara. University Of Lille.; FranciaEuropean Mathematical Society2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266932Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara; Nijenhuis operators on Banach homogeneous spaces; European Mathematical Society; Rendiconti Lincei-matematica E Applicazioni; 35; 4; 5-2024; 713-7391120-63301720-0768CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/RLM/1057info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/rlm/articles/14298925info:eu-repo/semantics/altIdentifier/url/https://ems.press/content/serial-article-files/50951info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2410.13557info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:41:23Zoai:ri.conicet.gov.ar:11336/266932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:41:23.306CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Nijenhuis operators on Banach homogeneous spaces |
| title |
Nijenhuis operators on Banach homogeneous spaces |
| spellingShingle |
Nijenhuis operators on Banach homogeneous spaces Golinksi, Tomasz NIJENHUIS OPERATOR HOMOGENEOUS SPACE ALMOST COMPLEX MANIFOLD BANACH–LIE GROUP |
| title_short |
Nijenhuis operators on Banach homogeneous spaces |
| title_full |
Nijenhuis operators on Banach homogeneous spaces |
| title_fullStr |
Nijenhuis operators on Banach homogeneous spaces |
| title_full_unstemmed |
Nijenhuis operators on Banach homogeneous spaces |
| title_sort |
Nijenhuis operators on Banach homogeneous spaces |
| dc.creator.none.fl_str_mv |
Golinksi, Tomasz Larotonda, Gabriel Andrés Tumpach, Alice Barbara |
| author |
Golinksi, Tomasz |
| author_facet |
Golinksi, Tomasz Larotonda, Gabriel Andrés Tumpach, Alice Barbara |
| author_role |
author |
| author2 |
Larotonda, Gabriel Andrés Tumpach, Alice Barbara |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
NIJENHUIS OPERATOR HOMOGENEOUS SPACE ALMOST COMPLEX MANIFOLD BANACH–LIE GROUP |
| topic |
NIJENHUIS OPERATOR HOMOGENEOUS SPACE ALMOST COMPLEX MANIFOLD BANACH–LIE GROUP |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/. Fil: Golinksi, Tomasz. University Of Bialystok; Polonia Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Tumpach, Alice Barbara. University Of Lille.; Francia |
| description |
For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266932 Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara; Nijenhuis operators on Banach homogeneous spaces; European Mathematical Society; Rendiconti Lincei-matematica E Applicazioni; 35; 4; 5-2024; 713-739 1120-6330 1720-0768 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/266932 |
| identifier_str_mv |
Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara; Nijenhuis operators on Banach homogeneous spaces; European Mathematical Society; Rendiconti Lincei-matematica E Applicazioni; 35; 4; 5-2024; 713-739 1120-6330 1720-0768 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4171/RLM/1057 info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/rlm/articles/14298925 info:eu-repo/semantics/altIdentifier/url/https://ems.press/content/serial-article-files/50951 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2410.13557 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
European Mathematical Society |
| publisher.none.fl_str_mv |
European Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597571604316160 |
| score |
12.976206 |