Skew braces and the Yang-Baxter equation
- Autores
- Guarnieri, Leandro; Vendramin, Claudio Leandro
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Braces were introduced by Rump to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation. We generalize Rump's braces to the non-commutative setting and use this new structure to study not necessarily involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation. Based on results of Bachiller and Catino and Rizzo, we develop an algorithm to enumerate and construct classical and non-classical braces of small size up to isomorphism. This algorithm is used to produce a database of braces of small size. The paper contains several open problems, questions and conjectures.
Fil: Guarnieri, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Brace
Yang-Baxter
1-cocycle - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55463
Ver los metadatos del registro completo
id |
CONICETDig_f7519f88f377a0387d176cbb62ab06b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55463 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Skew braces and the Yang-Baxter equationGuarnieri, LeandroVendramin, Claudio LeandroBraceYang-Baxter1-cocyclehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Braces were introduced by Rump to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation. We generalize Rump's braces to the non-commutative setting and use this new structure to study not necessarily involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation. Based on results of Bachiller and Catino and Rizzo, we develop an algorithm to enumerate and construct classical and non-classical braces of small size up to isomorphism. This algorithm is used to produce a database of braces of small size. The paper contains several open problems, questions and conjectures.Fil: Guarnieri, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55463Guarnieri, Leandro; Vendramin, Claudio Leandro; Skew braces and the Yang-Baxter equation; American Mathematical Society; Mathematics Of Computation; 86; 307; 9-2017; 2519-25340025-5718CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/mcom/0000-000-00/S0025-5718-2016-03161-0/info:eu-repo/semantics/altIdentifier/doi/10.1090/mcom/3161info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:03Zoai:ri.conicet.gov.ar:11336/55463instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:03.83CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Skew braces and the Yang-Baxter equation |
title |
Skew braces and the Yang-Baxter equation |
spellingShingle |
Skew braces and the Yang-Baxter equation Guarnieri, Leandro Brace Yang-Baxter 1-cocycle |
title_short |
Skew braces and the Yang-Baxter equation |
title_full |
Skew braces and the Yang-Baxter equation |
title_fullStr |
Skew braces and the Yang-Baxter equation |
title_full_unstemmed |
Skew braces and the Yang-Baxter equation |
title_sort |
Skew braces and the Yang-Baxter equation |
dc.creator.none.fl_str_mv |
Guarnieri, Leandro Vendramin, Claudio Leandro |
author |
Guarnieri, Leandro |
author_facet |
Guarnieri, Leandro Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Vendramin, Claudio Leandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Brace Yang-Baxter 1-cocycle |
topic |
Brace Yang-Baxter 1-cocycle |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Braces were introduced by Rump to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation. We generalize Rump's braces to the non-commutative setting and use this new structure to study not necessarily involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation. Based on results of Bachiller and Catino and Rizzo, we develop an algorithm to enumerate and construct classical and non-classical braces of small size up to isomorphism. This algorithm is used to produce a database of braces of small size. The paper contains several open problems, questions and conjectures. Fil: Guarnieri, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Braces were introduced by Rump to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation. We generalize Rump's braces to the non-commutative setting and use this new structure to study not necessarily involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation. Based on results of Bachiller and Catino and Rizzo, we develop an algorithm to enumerate and construct classical and non-classical braces of small size up to isomorphism. This algorithm is used to produce a database of braces of small size. The paper contains several open problems, questions and conjectures. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55463 Guarnieri, Leandro; Vendramin, Claudio Leandro; Skew braces and the Yang-Baxter equation; American Mathematical Society; Mathematics Of Computation; 86; 307; 9-2017; 2519-2534 0025-5718 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55463 |
identifier_str_mv |
Guarnieri, Leandro; Vendramin, Claudio Leandro; Skew braces and the Yang-Baxter equation; American Mathematical Society; Mathematics Of Computation; 86; 307; 9-2017; 2519-2534 0025-5718 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/mcom/0000-000-00/S0025-5718-2016-03161-0/ info:eu-repo/semantics/altIdentifier/doi/10.1090/mcom/3161 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613946288373760 |
score |
13.070432 |