On skew braces
- Autores
- Smoktunowicz, Agata; Vendramin, Claudio Leandro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center.
Fil: Smoktunowicz, Agata. University of Edinburgh; Reino Unido
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
BRACES
RADICAL RINGS
YANG-BAXTER
HOPF-GALOIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88541
Ver los metadatos del registro completo
id |
CONICETDig_5572955fe5e24ff0eb1ad95f5d0ffd31 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88541 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On skew bracesSmoktunowicz, AgataVendramin, Claudio LeandroBRACESRADICAL RINGSYANG-BAXTERHOPF-GALOIShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center. Fil: Smoktunowicz, Agata. University of Edinburgh; Reino UnidoFil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaEMS Publishing House2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88541Smoktunowicz, Agata; Vendramin, Claudio Leandro; On skew braces; EMS Publishing House; Journal of Combinatorial Algebra; 2; 1; 2-2018; 47-862415-6302CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=2415-6302&vol=2&iss=1&rank=3info:eu-repo/semantics/altIdentifier/doi/10.4171/JCA/2-1-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:02Zoai:ri.conicet.gov.ar:11336/88541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:02.54CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On skew braces |
title |
On skew braces |
spellingShingle |
On skew braces Smoktunowicz, Agata BRACES RADICAL RINGS YANG-BAXTER HOPF-GALOIS |
title_short |
On skew braces |
title_full |
On skew braces |
title_fullStr |
On skew braces |
title_full_unstemmed |
On skew braces |
title_sort |
On skew braces |
dc.creator.none.fl_str_mv |
Smoktunowicz, Agata Vendramin, Claudio Leandro |
author |
Smoktunowicz, Agata |
author_facet |
Smoktunowicz, Agata Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Vendramin, Claudio Leandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
BRACES RADICAL RINGS YANG-BAXTER HOPF-GALOIS |
topic |
BRACES RADICAL RINGS YANG-BAXTER HOPF-GALOIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center. Fil: Smoktunowicz, Agata. University of Edinburgh; Reino Unido Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88541 Smoktunowicz, Agata; Vendramin, Claudio Leandro; On skew braces; EMS Publishing House; Journal of Combinatorial Algebra; 2; 1; 2-2018; 47-86 2415-6302 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88541 |
identifier_str_mv |
Smoktunowicz, Agata; Vendramin, Claudio Leandro; On skew braces; EMS Publishing House; Journal of Combinatorial Algebra; 2; 1; 2-2018; 47-86 2415-6302 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=2415-6302&vol=2&iss=1&rank=3 info:eu-repo/semantics/altIdentifier/doi/10.4171/JCA/2-1-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EMS Publishing House |
publisher.none.fl_str_mv |
EMS Publishing House |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613466456850432 |
score |
13.070432 |