On skew braces

Autores
Smoktunowicz, Agata; Vendramin, Claudio Leandro
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center. 
Fil: Smoktunowicz, Agata. University of Edinburgh; Reino Unido
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
BRACES
RADICAL RINGS
YANG-BAXTER
HOPF-GALOIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88541

id CONICETDig_5572955fe5e24ff0eb1ad95f5d0ffd31
oai_identifier_str oai:ri.conicet.gov.ar:11336/88541
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On skew bracesSmoktunowicz, AgataVendramin, Claudio LeandroBRACESRADICAL RINGSYANG-BAXTERHOPF-GALOIShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center. Fil: Smoktunowicz, Agata. University of Edinburgh; Reino UnidoFil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaEMS Publishing House2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88541Smoktunowicz, Agata; Vendramin, Claudio Leandro; On skew braces; EMS Publishing House; Journal of Combinatorial Algebra; 2; 1; 2-2018; 47-862415-6302CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=2415-6302&vol=2&iss=1&rank=3info:eu-repo/semantics/altIdentifier/doi/10.4171/JCA/2-1-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:02Zoai:ri.conicet.gov.ar:11336/88541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:02.54CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On skew braces
title On skew braces
spellingShingle On skew braces
Smoktunowicz, Agata
BRACES
RADICAL RINGS
YANG-BAXTER
HOPF-GALOIS
title_short On skew braces
title_full On skew braces
title_fullStr On skew braces
title_full_unstemmed On skew braces
title_sort On skew braces
dc.creator.none.fl_str_mv Smoktunowicz, Agata
Vendramin, Claudio Leandro
author Smoktunowicz, Agata
author_facet Smoktunowicz, Agata
Vendramin, Claudio Leandro
author_role author
author2 Vendramin, Claudio Leandro
author2_role author
dc.subject.none.fl_str_mv BRACES
RADICAL RINGS
YANG-BAXTER
HOPF-GALOIS
topic BRACES
RADICAL RINGS
YANG-BAXTER
HOPF-GALOIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center. 
Fil: Smoktunowicz, Agata. University of Edinburgh; Reino Unido
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description Braces are generalizations of radical rings, introduced by Rump to study involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation (YBE). Skew braces were also recently introduced as a tool to study not necessarily involutive solutions. Roughly speaking, skew braces provide group-theoretical and ring-theoretical methods to understand solutions of the YBE. It turns out that skew braces appear in many different contexts, such as near-rings, matched pairs of groups, triply factorized groups, bijective 1-cocycles and Hopf-Galois extensions. These connections and some of their consequences are explored in this paper. We produce several new families of solutions related in many different ways with rings, near-rings and groups. We also study the solutions of the YBE that skew braces naturally produce. We prove, for example, that the order of the canonical solution associated with a finite skew brace is even: it is two times the exponent of the additive group modulo its center. 
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88541
Smoktunowicz, Agata; Vendramin, Claudio Leandro; On skew braces; EMS Publishing House; Journal of Combinatorial Algebra; 2; 1; 2-2018; 47-86
2415-6302
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88541
identifier_str_mv Smoktunowicz, Agata; Vendramin, Claudio Leandro; On skew braces; EMS Publishing House; Journal of Combinatorial Algebra; 2; 1; 2-2018; 47-86
2415-6302
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=2415-6302&vol=2&iss=1&rank=3
info:eu-repo/semantics/altIdentifier/doi/10.4171/JCA/2-1-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EMS Publishing House
publisher.none.fl_str_mv EMS Publishing House
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613466456850432
score 13.070432