Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces
- Autores
- Acri, Emiliano Francisco; Lutowski, R.; Vendramin, Claudio Leandro
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using Bieberbach groups, we study multipermutation involutive solutions to the Yang-Baxter equation. We use a linear representation of the structure group of an involutive solution to study the unique product property in such groups. An algorithm to find subgroups of a Bieberbach group isomorphic to the Promislow subgroup is introduced and then used in the case of structure group of involutive solutions. To extend the results related to retractability to non-involutive solutions, following the ideas of Meng, Ballester-Bolinches and Romero, we develop the theory of right p-nilpotent skew braces. The theory of left p-nilpotent skew braces is also developed and used to give a short proof of a theorem of Smoktunowicz in the context of skew braces.
Fil: Acri, Emiliano Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lutowski, R.. University Of Gdańsk; Polonia
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
BIEBERBACH GROUP
MULTIPERMUTATION SOLUTION
SET-THEORETIC SOLUTION
SKEW BRACE
UNIQUE PRODUCT PROPERTY
YANG-BAXTER EQUATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136766
Ver los metadatos del registro completo
id |
CONICETDig_e2cb50ce3ebfc589bc7fe8402b4dca70 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136766 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew bracesAcri, Emiliano FranciscoLutowski, R.Vendramin, Claudio LeandroBIEBERBACH GROUPMULTIPERMUTATION SOLUTIONSET-THEORETIC SOLUTIONSKEW BRACEUNIQUE PRODUCT PROPERTYYANG-BAXTER EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Using Bieberbach groups, we study multipermutation involutive solutions to the Yang-Baxter equation. We use a linear representation of the structure group of an involutive solution to study the unique product property in such groups. An algorithm to find subgroups of a Bieberbach group isomorphic to the Promislow subgroup is introduced and then used in the case of structure group of involutive solutions. To extend the results related to retractability to non-involutive solutions, following the ideas of Meng, Ballester-Bolinches and Romero, we develop the theory of right p-nilpotent skew braces. The theory of left p-nilpotent skew braces is also developed and used to give a short proof of a theorem of Smoktunowicz in the context of skew braces.Fil: Acri, Emiliano Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lutowski, R.. University Of Gdańsk; PoloniaFil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaWorld Scientific2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136766Acri, Emiliano Francisco; Lutowski, R.; Vendramin, Claudio Leandro; Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces; World Scientific; International Journal of Algebra and Computation; 30; 1; 9-2019; 91-1150218-1967CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218196719500656info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218196719500656info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:03Zoai:ri.conicet.gov.ar:11336/136766instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:04.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces |
title |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces |
spellingShingle |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces Acri, Emiliano Francisco BIEBERBACH GROUP MULTIPERMUTATION SOLUTION SET-THEORETIC SOLUTION SKEW BRACE UNIQUE PRODUCT PROPERTY YANG-BAXTER EQUATION |
title_short |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces |
title_full |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces |
title_fullStr |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces |
title_full_unstemmed |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces |
title_sort |
Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces |
dc.creator.none.fl_str_mv |
Acri, Emiliano Francisco Lutowski, R. Vendramin, Claudio Leandro |
author |
Acri, Emiliano Francisco |
author_facet |
Acri, Emiliano Francisco Lutowski, R. Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Lutowski, R. Vendramin, Claudio Leandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BIEBERBACH GROUP MULTIPERMUTATION SOLUTION SET-THEORETIC SOLUTION SKEW BRACE UNIQUE PRODUCT PROPERTY YANG-BAXTER EQUATION |
topic |
BIEBERBACH GROUP MULTIPERMUTATION SOLUTION SET-THEORETIC SOLUTION SKEW BRACE UNIQUE PRODUCT PROPERTY YANG-BAXTER EQUATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using Bieberbach groups, we study multipermutation involutive solutions to the Yang-Baxter equation. We use a linear representation of the structure group of an involutive solution to study the unique product property in such groups. An algorithm to find subgroups of a Bieberbach group isomorphic to the Promislow subgroup is introduced and then used in the case of structure group of involutive solutions. To extend the results related to retractability to non-involutive solutions, following the ideas of Meng, Ballester-Bolinches and Romero, we develop the theory of right p-nilpotent skew braces. The theory of left p-nilpotent skew braces is also developed and used to give a short proof of a theorem of Smoktunowicz in the context of skew braces. Fil: Acri, Emiliano Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Lutowski, R.. University Of Gdańsk; Polonia Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Using Bieberbach groups, we study multipermutation involutive solutions to the Yang-Baxter equation. We use a linear representation of the structure group of an involutive solution to study the unique product property in such groups. An algorithm to find subgroups of a Bieberbach group isomorphic to the Promislow subgroup is introduced and then used in the case of structure group of involutive solutions. To extend the results related to retractability to non-involutive solutions, following the ideas of Meng, Ballester-Bolinches and Romero, we develop the theory of right p-nilpotent skew braces. The theory of left p-nilpotent skew braces is also developed and used to give a short proof of a theorem of Smoktunowicz in the context of skew braces. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136766 Acri, Emiliano Francisco; Lutowski, R.; Vendramin, Claudio Leandro; Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces; World Scientific; International Journal of Algebra and Computation; 30; 1; 9-2019; 91-115 0218-1967 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136766 |
identifier_str_mv |
Acri, Emiliano Francisco; Lutowski, R.; Vendramin, Claudio Leandro; Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces; World Scientific; International Journal of Algebra and Computation; 30; 1; 9-2019; 91-115 0218-1967 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218196719500656 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218196719500656 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614005940813824 |
score |
13.070432 |