Factorizations of skew braces
- Autores
- Jespers, E.; Kubat, L.; Van Antwerpen, A.; Vendramin, Claudio Leandro
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce strong left ideals of skew braces and prove that they produce non-trivial decomposition of set-theoretic solutions of the Yang–Baxter equation. We study factorization of skew left braces through strong left ideals and we prove analogs of Itô’s theorem in the context of skew left braces. As a corollary, we obtain applications to the retractability problem of involutive non-degenerate solutions of the Yang–Baxter equation. Finally, we classify skew braces that contain no non-trivial proper characteristic ideals.
Fil: Jespers, E.. Vrije Unviversiteit Brussel; Bélgica
Fil: Kubat, L.. Vrije Unviversiteit Brussel; Bélgica
Fil: Van Antwerpen, A.. Vrije Unviversiteit Brussel; Bélgica
Fil: Vendramin, Claudio Leandro. Institute of Mathematical Sciences at NYU Shanghai; China. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FACTORIZATION
YANG-BAXTER
BRACE
RADICAL RING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136170
Ver los metadatos del registro completo
id |
CONICETDig_acb4bfb2e53c4788db00691cb8babb35 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136170 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Factorizations of skew bracesJespers, E.Kubat, L.Van Antwerpen, A.Vendramin, Claudio LeandroFACTORIZATIONYANG-BAXTERBRACERADICAL RINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce strong left ideals of skew braces and prove that they produce non-trivial decomposition of set-theoretic solutions of the Yang–Baxter equation. We study factorization of skew left braces through strong left ideals and we prove analogs of Itô’s theorem in the context of skew left braces. As a corollary, we obtain applications to the retractability problem of involutive non-degenerate solutions of the Yang–Baxter equation. Finally, we classify skew braces that contain no non-trivial proper characteristic ideals.Fil: Jespers, E.. Vrije Unviversiteit Brussel; BélgicaFil: Kubat, L.. Vrije Unviversiteit Brussel; BélgicaFil: Van Antwerpen, A.. Vrije Unviversiteit Brussel; BélgicaFil: Vendramin, Claudio Leandro. Institute of Mathematical Sciences at NYU Shanghai; China. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2019-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136170Jespers, E.; Kubat, L.; Van Antwerpen, A.; Vendramin, Claudio Leandro; Factorizations of skew braces; Springer; Mathematische Annalen; 375; 3-4; 20-9-2019; 1649-16630025-5831CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-019-01909-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00208-019-01909-1info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1905.05886info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:41Zoai:ri.conicet.gov.ar:11336/136170instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:41.547CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Factorizations of skew braces |
title |
Factorizations of skew braces |
spellingShingle |
Factorizations of skew braces Jespers, E. FACTORIZATION YANG-BAXTER BRACE RADICAL RING |
title_short |
Factorizations of skew braces |
title_full |
Factorizations of skew braces |
title_fullStr |
Factorizations of skew braces |
title_full_unstemmed |
Factorizations of skew braces |
title_sort |
Factorizations of skew braces |
dc.creator.none.fl_str_mv |
Jespers, E. Kubat, L. Van Antwerpen, A. Vendramin, Claudio Leandro |
author |
Jespers, E. |
author_facet |
Jespers, E. Kubat, L. Van Antwerpen, A. Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Kubat, L. Van Antwerpen, A. Vendramin, Claudio Leandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FACTORIZATION YANG-BAXTER BRACE RADICAL RING |
topic |
FACTORIZATION YANG-BAXTER BRACE RADICAL RING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce strong left ideals of skew braces and prove that they produce non-trivial decomposition of set-theoretic solutions of the Yang–Baxter equation. We study factorization of skew left braces through strong left ideals and we prove analogs of Itô’s theorem in the context of skew left braces. As a corollary, we obtain applications to the retractability problem of involutive non-degenerate solutions of the Yang–Baxter equation. Finally, we classify skew braces that contain no non-trivial proper characteristic ideals. Fil: Jespers, E.. Vrije Unviversiteit Brussel; Bélgica Fil: Kubat, L.. Vrije Unviversiteit Brussel; Bélgica Fil: Van Antwerpen, A.. Vrije Unviversiteit Brussel; Bélgica Fil: Vendramin, Claudio Leandro. Institute of Mathematical Sciences at NYU Shanghai; China. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We introduce strong left ideals of skew braces and prove that they produce non-trivial decomposition of set-theoretic solutions of the Yang–Baxter equation. We study factorization of skew left braces through strong left ideals and we prove analogs of Itô’s theorem in the context of skew left braces. As a corollary, we obtain applications to the retractability problem of involutive non-degenerate solutions of the Yang–Baxter equation. Finally, we classify skew braces that contain no non-trivial proper characteristic ideals. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136170 Jespers, E.; Kubat, L.; Van Antwerpen, A.; Vendramin, Claudio Leandro; Factorizations of skew braces; Springer; Mathematische Annalen; 375; 3-4; 20-9-2019; 1649-1663 0025-5831 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136170 |
identifier_str_mv |
Jespers, E.; Kubat, L.; Van Antwerpen, A.; Vendramin, Claudio Leandro; Factorizations of skew braces; Springer; Mathematische Annalen; 375; 3-4; 20-9-2019; 1649-1663 0025-5831 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-019-01909-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00208-019-01909-1 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1905.05886 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613113679183872 |
score |
13.070432 |