On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class

Autores
Castelli, M.; Ramírez, Santiago Agustín
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the first part, we focus on indecomposable involutive solutions of the Yang-Baxter equation whose permutation group forces them to be uniconnected. Indecomposable involutive solutions with a permutation group isomorphic to a dihedral group or a minimal non-cyclic group are studied in detail. In the last part, we study the Dehornoy class of involutive solutions (not necessarily indecomposable) and its link with left braces. As an application, we give an upper bound for several families of indecomposable involutive solutions and we compute the precise value in some other cases.
Fil: Castelli, M.. Università del Salento; Italia
Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
SET-THEORETIC SOLUTION
YANG-BAXTER EQUATION
BRACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264228

id CONICETDig_ca37a6eaab73164ca90100905dd3bffb
oai_identifier_str oai:ri.conicet.gov.ar:11336/264228
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On uniconnected solutions of the Yang-Baxter equation and Dehornoy's classCastelli, M.Ramírez, Santiago AgustínSET-THEORETIC SOLUTIONYANG-BAXTER EQUATIONBRACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the first part, we focus on indecomposable involutive solutions of the Yang-Baxter equation whose permutation group forces them to be uniconnected. Indecomposable involutive solutions with a permutation group isomorphic to a dihedral group or a minimal non-cyclic group are studied in detail. In the last part, we study the Dehornoy class of involutive solutions (not necessarily indecomposable) and its link with left braces. As an application, we give an upper bound for several families of indecomposable involutive solutions and we compute the precise value in some other cases.Fil: Castelli, M.. Università del Salento; ItaliaFil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264228Castelli, M.; Ramírez, Santiago Agustín; On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class; Academic Press Inc Elsevier Science; Journal of Algebra; 657; 11-2024; 57-800021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869324002643?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2024.04.032info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2306.08664info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:24Zoai:ri.conicet.gov.ar:11336/264228instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:25.076CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
title On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
spellingShingle On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
Castelli, M.
SET-THEORETIC SOLUTION
YANG-BAXTER EQUATION
BRACE
title_short On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
title_full On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
title_fullStr On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
title_full_unstemmed On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
title_sort On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class
dc.creator.none.fl_str_mv Castelli, M.
Ramírez, Santiago Agustín
author Castelli, M.
author_facet Castelli, M.
Ramírez, Santiago Agustín
author_role author
author2 Ramírez, Santiago Agustín
author2_role author
dc.subject.none.fl_str_mv SET-THEORETIC SOLUTION
YANG-BAXTER EQUATION
BRACE
topic SET-THEORETIC SOLUTION
YANG-BAXTER EQUATION
BRACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the first part, we focus on indecomposable involutive solutions of the Yang-Baxter equation whose permutation group forces them to be uniconnected. Indecomposable involutive solutions with a permutation group isomorphic to a dihedral group or a minimal non-cyclic group are studied in detail. In the last part, we study the Dehornoy class of involutive solutions (not necessarily indecomposable) and its link with left braces. As an application, we give an upper bound for several families of indecomposable involutive solutions and we compute the precise value in some other cases.
Fil: Castelli, M.. Università del Salento; Italia
Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description In the first part, we focus on indecomposable involutive solutions of the Yang-Baxter equation whose permutation group forces them to be uniconnected. Indecomposable involutive solutions with a permutation group isomorphic to a dihedral group or a minimal non-cyclic group are studied in detail. In the last part, we study the Dehornoy class of involutive solutions (not necessarily indecomposable) and its link with left braces. As an application, we give an upper bound for several families of indecomposable involutive solutions and we compute the precise value in some other cases.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264228
Castelli, M.; Ramírez, Santiago Agustín; On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class; Academic Press Inc Elsevier Science; Journal of Algebra; 657; 11-2024; 57-80
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264228
identifier_str_mv Castelli, M.; Ramírez, Santiago Agustín; On uniconnected solutions of the Yang-Baxter equation and Dehornoy's class; Academic Press Inc Elsevier Science; Journal of Algebra; 657; 11-2024; 57-80
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869324002643?via%3Dihub
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2024.04.032
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2306.08664
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981234021498880
score 12.48226