Homogeneous spaces in Hartree-Fock-Bogoliubov theory
- Autores
- Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces.
Fil: Alvarado, Claudia Damaris. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
GENERALIZED ONE-PARTICLE DENSITY MATRIX
BOGOLIUBOV TRANSFORMATION
HOMOGENEOUS SPACE
EMBEDDED SUBMANIFOLD
INVARIANT SYMPLECTIC FORM
KÄHLER HOMOGENEOUS SPACE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/245787
Ver los metadatos del registro completo
id |
CONICETDig_f214be79dde6cc02c388d2554f6a5de2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/245787 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Homogeneous spaces in Hartree-Fock-Bogoliubov theoryAlvarado, Claudia DamarisChiumiento, Eduardo HernanGENERALIZED ONE-PARTICLE DENSITY MATRIXBOGOLIUBOV TRANSFORMATIONHOMOGENEOUS SPACEEMBEDDED SUBMANIFOLDINVARIANT SYMPLECTIC FORMKÄHLER HOMOGENEOUS SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces.Fil: Alvarado, Claudia Damaris. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaSpringer2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245787Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan; Homogeneous spaces in Hartree-Fock-Bogoliubov theory; Springer; The Journal Of Geometric Analysis; 34; 334; 9-2024; 1-481050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/s12220-024-01776-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01776-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2402.15606info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:52Zoai:ri.conicet.gov.ar:11336/245787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:53.225CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory |
title |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory |
spellingShingle |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory Alvarado, Claudia Damaris GENERALIZED ONE-PARTICLE DENSITY MATRIX BOGOLIUBOV TRANSFORMATION HOMOGENEOUS SPACE EMBEDDED SUBMANIFOLD INVARIANT SYMPLECTIC FORM KÄHLER HOMOGENEOUS SPACE |
title_short |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory |
title_full |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory |
title_fullStr |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory |
title_full_unstemmed |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory |
title_sort |
Homogeneous spaces in Hartree-Fock-Bogoliubov theory |
dc.creator.none.fl_str_mv |
Alvarado, Claudia Damaris Chiumiento, Eduardo Hernan |
author |
Alvarado, Claudia Damaris |
author_facet |
Alvarado, Claudia Damaris Chiumiento, Eduardo Hernan |
author_role |
author |
author2 |
Chiumiento, Eduardo Hernan |
author2_role |
author |
dc.subject.none.fl_str_mv |
GENERALIZED ONE-PARTICLE DENSITY MATRIX BOGOLIUBOV TRANSFORMATION HOMOGENEOUS SPACE EMBEDDED SUBMANIFOLD INVARIANT SYMPLECTIC FORM KÄHLER HOMOGENEOUS SPACE |
topic |
GENERALIZED ONE-PARTICLE DENSITY MATRIX BOGOLIUBOV TRANSFORMATION HOMOGENEOUS SPACE EMBEDDED SUBMANIFOLD INVARIANT SYMPLECTIC FORM KÄHLER HOMOGENEOUS SPACE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces. Fil: Alvarado, Claudia Damaris. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/245787 Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan; Homogeneous spaces in Hartree-Fock-Bogoliubov theory; Springer; The Journal Of Geometric Analysis; 34; 334; 9-2024; 1-48 1050-6926 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/245787 |
identifier_str_mv |
Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan; Homogeneous spaces in Hartree-Fock-Bogoliubov theory; Springer; The Journal Of Geometric Analysis; 34; 334; 9-2024; 1-48 1050-6926 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/s12220-024-01776-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01776-6 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2402.15606 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082969672876032 |
score |
13.22299 |