Homogeneous spaces in Hartree-Fock-Bogoliubov theory

Autores
Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces.
Fil: Alvarado, Claudia Damaris. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
GENERALIZED ONE-PARTICLE DENSITY MATRIX
BOGOLIUBOV TRANSFORMATION
HOMOGENEOUS SPACE
EMBEDDED SUBMANIFOLD
INVARIANT SYMPLECTIC FORM
KÄHLER HOMOGENEOUS SPACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/245787

id CONICETDig_f214be79dde6cc02c388d2554f6a5de2
oai_identifier_str oai:ri.conicet.gov.ar:11336/245787
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Homogeneous spaces in Hartree-Fock-Bogoliubov theoryAlvarado, Claudia DamarisChiumiento, Eduardo HernanGENERALIZED ONE-PARTICLE DENSITY MATRIXBOGOLIUBOV TRANSFORMATIONHOMOGENEOUS SPACEEMBEDDED SUBMANIFOLDINVARIANT SYMPLECTIC FORMKÄHLER HOMOGENEOUS SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces.Fil: Alvarado, Claudia Damaris. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaSpringer2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245787Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan; Homogeneous spaces in Hartree-Fock-Bogoliubov theory; Springer; The Journal Of Geometric Analysis; 34; 334; 9-2024; 1-481050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/s12220-024-01776-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01776-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2402.15606info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:52Zoai:ri.conicet.gov.ar:11336/245787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:53.225CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Homogeneous spaces in Hartree-Fock-Bogoliubov theory
title Homogeneous spaces in Hartree-Fock-Bogoliubov theory
spellingShingle Homogeneous spaces in Hartree-Fock-Bogoliubov theory
Alvarado, Claudia Damaris
GENERALIZED ONE-PARTICLE DENSITY MATRIX
BOGOLIUBOV TRANSFORMATION
HOMOGENEOUS SPACE
EMBEDDED SUBMANIFOLD
INVARIANT SYMPLECTIC FORM
KÄHLER HOMOGENEOUS SPACE
title_short Homogeneous spaces in Hartree-Fock-Bogoliubov theory
title_full Homogeneous spaces in Hartree-Fock-Bogoliubov theory
title_fullStr Homogeneous spaces in Hartree-Fock-Bogoliubov theory
title_full_unstemmed Homogeneous spaces in Hartree-Fock-Bogoliubov theory
title_sort Homogeneous spaces in Hartree-Fock-Bogoliubov theory
dc.creator.none.fl_str_mv Alvarado, Claudia Damaris
Chiumiento, Eduardo Hernan
author Alvarado, Claudia Damaris
author_facet Alvarado, Claudia Damaris
Chiumiento, Eduardo Hernan
author_role author
author2 Chiumiento, Eduardo Hernan
author2_role author
dc.subject.none.fl_str_mv GENERALIZED ONE-PARTICLE DENSITY MATRIX
BOGOLIUBOV TRANSFORMATION
HOMOGENEOUS SPACE
EMBEDDED SUBMANIFOLD
INVARIANT SYMPLECTIC FORM
KÄHLER HOMOGENEOUS SPACE
topic GENERALIZED ONE-PARTICLE DENSITY MATRIX
BOGOLIUBOV TRANSFORMATION
HOMOGENEOUS SPACE
EMBEDDED SUBMANIFOLD
INVARIANT SYMPLECTIC FORM
KÄHLER HOMOGENEOUS SPACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces.
Fil: Alvarado, Claudia Damaris. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces.
publishDate 2024
dc.date.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/245787
Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan; Homogeneous spaces in Hartree-Fock-Bogoliubov theory; Springer; The Journal Of Geometric Analysis; 34; 334; 9-2024; 1-48
1050-6926
CONICET Digital
CONICET
url http://hdl.handle.net/11336/245787
identifier_str_mv Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan; Homogeneous spaces in Hartree-Fock-Bogoliubov theory; Springer; The Journal Of Geometric Analysis; 34; 334; 9-2024; 1-48
1050-6926
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/s12220-024-01776-6
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01776-6
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2402.15606
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082969672876032
score 13.22299