On s-set in space of homogeneous type
- Autores
- Carena, Marilina; Toschi, Marisa
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let (X, d, μ) be a space of homogeneous type. We study the relationship between two types of s-sets: relative to a distance and relative to a measure. We find a condition on a closed subset F of X under which F is an s-set relative to the measure μ if and only if F is an s-set relative to δ. Here δ denotes the quasi-distance defined by Macías and Segovia such that (X, δ, μ) is a normal space. In order to prove this result, we prove a covering type lemma and a type of Hausdorff measure based criterion for a given set to be an s-set relative to μ.
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
SPACES OF HOMOGENEOUS TYPE
S-SETS
HAUSDORFF MEASURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31885
Ver los metadatos del registro completo
| id |
CONICETDig_50dee240fc4687f94e0dbe8776deaf8f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31885 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On s-set in space of homogeneous typeCarena, MarilinaToschi, MarisaSPACES OF HOMOGENEOUS TYPES-SETSHAUSDORFF MEASUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (X, d, μ) be a space of homogeneous type. We study the relationship between two types of s-sets: relative to a distance and relative to a measure. We find a condition on a closed subset F of X under which F is an s-set relative to the measure μ if and only if F is an s-set relative to δ. Here δ denotes the quasi-distance defined by Macías and Segovia such that (X, δ, μ) is a normal space. In order to prove this result, we prove a covering type lemma and a type of Hausdorff measure based criterion for a given set to be an s-set relative to μ.Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaPolish Academy of Sciences. Institute of Mathematics2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31885Toschi, Marisa; Carena, Marilina; On s-set in space of homogeneous type; Polish Academy of Sciences. Institute of Mathematics; Colloquium Mathematicum; 138; 2; 1-2015; 193-2030010-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.2971info:eu-repo/semantics/altIdentifier/doi/10.4064/cm138-2-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:23:07Zoai:ri.conicet.gov.ar:11336/31885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:23:07.954CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On s-set in space of homogeneous type |
| title |
On s-set in space of homogeneous type |
| spellingShingle |
On s-set in space of homogeneous type Carena, Marilina SPACES OF HOMOGENEOUS TYPE S-SETS HAUSDORFF MEASURE |
| title_short |
On s-set in space of homogeneous type |
| title_full |
On s-set in space of homogeneous type |
| title_fullStr |
On s-set in space of homogeneous type |
| title_full_unstemmed |
On s-set in space of homogeneous type |
| title_sort |
On s-set in space of homogeneous type |
| dc.creator.none.fl_str_mv |
Carena, Marilina Toschi, Marisa |
| author |
Carena, Marilina |
| author_facet |
Carena, Marilina Toschi, Marisa |
| author_role |
author |
| author2 |
Toschi, Marisa |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
SPACES OF HOMOGENEOUS TYPE S-SETS HAUSDORFF MEASURE |
| topic |
SPACES OF HOMOGENEOUS TYPE S-SETS HAUSDORFF MEASURE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let (X, d, μ) be a space of homogeneous type. We study the relationship between two types of s-sets: relative to a distance and relative to a measure. We find a condition on a closed subset F of X under which F is an s-set relative to the measure μ if and only if F is an s-set relative to δ. Here δ denotes the quasi-distance defined by Macías and Segovia such that (X, δ, μ) is a normal space. In order to prove this result, we prove a covering type lemma and a type of Hausdorff measure based criterion for a given set to be an s-set relative to μ. Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
| description |
Let (X, d, μ) be a space of homogeneous type. We study the relationship between two types of s-sets: relative to a distance and relative to a measure. We find a condition on a closed subset F of X under which F is an s-set relative to the measure μ if and only if F is an s-set relative to δ. Here δ denotes the quasi-distance defined by Macías and Segovia such that (X, δ, μ) is a normal space. In order to prove this result, we prove a covering type lemma and a type of Hausdorff measure based criterion for a given set to be an s-set relative to μ. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31885 Toschi, Marisa; Carena, Marilina; On s-set in space of homogeneous type; Polish Academy of Sciences. Institute of Mathematics; Colloquium Mathematicum; 138; 2; 1-2015; 193-203 0010-1354 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/31885 |
| identifier_str_mv |
Toschi, Marisa; Carena, Marilina; On s-set in space of homogeneous type; Polish Academy of Sciences. Institute of Mathematics; Colloquium Mathematicum; 138; 2; 1-2015; 193-203 0010-1354 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.2971 info:eu-repo/semantics/altIdentifier/doi/10.4064/cm138-2-4 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
| publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781756276998144 |
| score |
12.982451 |