Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces

Autores
Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
Fil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
GENERALIZED FRACTIONAL OPERATOR
NON-HOMOGENEOUS SPACE
WEIGHT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/86013

id CONICETDig_20659468be1600a60e8bf4913a336d85
oai_identifier_str oai:ri.conicet.gov.ar:11336/86013
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spacesPradolini, Gladis GuadalupeRecchi, Diana JorgelinaGENERALIZED FRACTIONAL OPERATORNON-HOMOGENEOUS SPACEWEIGHThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaFil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaCzech Academy of Sciences2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86013Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces; Czech Academy of Sciences; Czechoslovak Mathematical Journal; 68; 1; 3-2018; 77-940011-46421572-9141CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1612.05789info:eu-repo/semantics/altIdentifier/url/https://articles.math.cas.cz/10.21136/CMJ.2018.0337-16info:eu-repo/semantics/altIdentifier/doi/10.21136/CMJ.2018.0337-16info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:15Zoai:ri.conicet.gov.ar:11336/86013instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:15.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
title Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
spellingShingle Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
Pradolini, Gladis Guadalupe
GENERALIZED FRACTIONAL OPERATOR
NON-HOMOGENEOUS SPACE
WEIGHT
title_short Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
title_full Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
title_fullStr Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
title_full_unstemmed Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
title_sort Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
dc.creator.none.fl_str_mv Pradolini, Gladis Guadalupe
Recchi, Diana Jorgelina
author Pradolini, Gladis Guadalupe
author_facet Pradolini, Gladis Guadalupe
Recchi, Diana Jorgelina
author_role author
author2 Recchi, Diana Jorgelina
author2_role author
dc.subject.none.fl_str_mv GENERALIZED FRACTIONAL OPERATOR
NON-HOMOGENEOUS SPACE
WEIGHT
topic GENERALIZED FRACTIONAL OPERATOR
NON-HOMOGENEOUS SPACE
WEIGHT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
Fil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).
publishDate 2018
dc.date.none.fl_str_mv 2018-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/86013
Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces; Czech Academy of Sciences; Czechoslovak Mathematical Journal; 68; 1; 3-2018; 77-94
0011-4642
1572-9141
CONICET Digital
CONICET
url http://hdl.handle.net/11336/86013
identifier_str_mv Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces; Czech Academy of Sciences; Czechoslovak Mathematical Journal; 68; 1; 3-2018; 77-94
0011-4642
1572-9141
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1612.05789
info:eu-repo/semantics/altIdentifier/url/https://articles.math.cas.cz/10.21136/CMJ.2018.0337-16
info:eu-repo/semantics/altIdentifier/doi/10.21136/CMJ.2018.0337-16
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Czech Academy of Sciences
publisher.none.fl_str_mv Czech Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613020365357056
score 13.070432