Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
- Autores
- Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
Fil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
GENERALIZED FRACTIONAL OPERATOR
NON-HOMOGENEOUS SPACE
WEIGHT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86013
Ver los metadatos del registro completo
id |
CONICETDig_20659468be1600a60e8bf4913a336d85 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86013 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spacesPradolini, Gladis GuadalupeRecchi, Diana JorgelinaGENERALIZED FRACTIONAL OPERATORNON-HOMOGENEOUS SPACEWEIGHThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaFil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaCzech Academy of Sciences2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86013Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces; Czech Academy of Sciences; Czechoslovak Mathematical Journal; 68; 1; 3-2018; 77-940011-46421572-9141CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1612.05789info:eu-repo/semantics/altIdentifier/url/https://articles.math.cas.cz/10.21136/CMJ.2018.0337-16info:eu-repo/semantics/altIdentifier/doi/10.21136/CMJ.2018.0337-16info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:15Zoai:ri.conicet.gov.ar:11336/86013instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:15.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces |
title |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces |
spellingShingle |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces Pradolini, Gladis Guadalupe GENERALIZED FRACTIONAL OPERATOR NON-HOMOGENEOUS SPACE WEIGHT |
title_short |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces |
title_full |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces |
title_fullStr |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces |
title_full_unstemmed |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces |
title_sort |
Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces |
dc.creator.none.fl_str_mv |
Pradolini, Gladis Guadalupe Recchi, Diana Jorgelina |
author |
Pradolini, Gladis Guadalupe |
author_facet |
Pradolini, Gladis Guadalupe Recchi, Diana Jorgelina |
author_role |
author |
author2 |
Recchi, Diana Jorgelina |
author2_role |
author |
dc.subject.none.fl_str_mv |
GENERALIZED FRACTIONAL OPERATOR NON-HOMOGENEOUS SPACE WEIGHT |
topic |
GENERALIZED FRACTIONAL OPERATOR NON-HOMOGENEOUS SPACE WEIGHT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012). Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina Fil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where l(Q) is the side length of the cube Q and 0 < n ⩽ d. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86013 Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces; Czech Academy of Sciences; Czechoslovak Mathematical Journal; 68; 1; 3-2018; 77-94 0011-4642 1572-9141 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86013 |
identifier_str_mv |
Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces; Czech Academy of Sciences; Czechoslovak Mathematical Journal; 68; 1; 3-2018; 77-94 0011-4642 1572-9141 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1612.05789 info:eu-repo/semantics/altIdentifier/url/https://articles.math.cas.cz/10.21136/CMJ.2018.0337-16 info:eu-repo/semantics/altIdentifier/doi/10.21136/CMJ.2018.0337-16 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Czech Academy of Sciences |
publisher.none.fl_str_mv |
Czech Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613020365357056 |
score |
13.070432 |