A nonlocal diffusion problem on manifolds
- Autores
- Bandle, Catherine; González, María del Mar; Fontelos, Marco A.; Wolanski, Noemi Irene
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study a nonlocal diffusion problem on a manifold. These kinds of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior.
Fil: Bandle, Catherine. University Of Basel; Suiza
Fil: González, María del Mar. Universidad Autonoma de Madrid; España
Fil: Fontelos, Marco A.. Instituto de Ciencias Matemáticas; España
Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
DIFFUSION ON MANIFOLDS
HYPERBOLIC SPACE
LOCALIZATION
LONGTIME BEHAVIOR
NONLOCAL DIFFUSION
SPECTRAL PROPERTIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89053
Ver los metadatos del registro completo
id |
CONICETDig_f1acfa04f9e1416e02fedb1edf5e6457 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89053 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A nonlocal diffusion problem on manifoldsBandle, CatherineGonzález, María del MarFontelos, Marco A.Wolanski, Noemi IreneDIFFUSION ON MANIFOLDSHYPERBOLIC SPACELOCALIZATIONLONGTIME BEHAVIORNONLOCAL DIFFUSIONSPECTRAL PROPERTIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study a nonlocal diffusion problem on a manifold. These kinds of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior.Fil: Bandle, Catherine. University Of Basel; SuizaFil: González, María del Mar. Universidad Autonoma de Madrid; EspañaFil: Fontelos, Marco A.. Instituto de Ciencias Matemáticas; EspañaFil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaTaylor & Francis2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89053Bandle, Catherine; González, María del Mar; Fontelos, Marco A.; Wolanski, Noemi Irene; A nonlocal diffusion problem on manifolds; Taylor & Francis; Communications In Partial Differential Equations; 43; 4; 4-2018; 652-6760360-5302CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.09190info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03605302.2018.1459685?journalCode=lpde20info:eu-repo/semantics/altIdentifier/doi/10.1080/03605302.2018.1459685info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:02Zoai:ri.conicet.gov.ar:11336/89053instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:02.864CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A nonlocal diffusion problem on manifolds |
title |
A nonlocal diffusion problem on manifolds |
spellingShingle |
A nonlocal diffusion problem on manifolds Bandle, Catherine DIFFUSION ON MANIFOLDS HYPERBOLIC SPACE LOCALIZATION LONGTIME BEHAVIOR NONLOCAL DIFFUSION SPECTRAL PROPERTIES |
title_short |
A nonlocal diffusion problem on manifolds |
title_full |
A nonlocal diffusion problem on manifolds |
title_fullStr |
A nonlocal diffusion problem on manifolds |
title_full_unstemmed |
A nonlocal diffusion problem on manifolds |
title_sort |
A nonlocal diffusion problem on manifolds |
dc.creator.none.fl_str_mv |
Bandle, Catherine González, María del Mar Fontelos, Marco A. Wolanski, Noemi Irene |
author |
Bandle, Catherine |
author_facet |
Bandle, Catherine González, María del Mar Fontelos, Marco A. Wolanski, Noemi Irene |
author_role |
author |
author2 |
González, María del Mar Fontelos, Marco A. Wolanski, Noemi Irene |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DIFFUSION ON MANIFOLDS HYPERBOLIC SPACE LOCALIZATION LONGTIME BEHAVIOR NONLOCAL DIFFUSION SPECTRAL PROPERTIES |
topic |
DIFFUSION ON MANIFOLDS HYPERBOLIC SPACE LOCALIZATION LONGTIME BEHAVIOR NONLOCAL DIFFUSION SPECTRAL PROPERTIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study a nonlocal diffusion problem on a manifold. These kinds of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior. Fil: Bandle, Catherine. University Of Basel; Suiza Fil: González, María del Mar. Universidad Autonoma de Madrid; España Fil: Fontelos, Marco A.. Instituto de Ciencias Matemáticas; España Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper we study a nonlocal diffusion problem on a manifold. These kinds of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89053 Bandle, Catherine; González, María del Mar; Fontelos, Marco A.; Wolanski, Noemi Irene; A nonlocal diffusion problem on manifolds; Taylor & Francis; Communications In Partial Differential Equations; 43; 4; 4-2018; 652-676 0360-5302 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89053 |
identifier_str_mv |
Bandle, Catherine; González, María del Mar; Fontelos, Marco A.; Wolanski, Noemi Irene; A nonlocal diffusion problem on manifolds; Taylor & Francis; Communications In Partial Differential Equations; 43; 4; 4-2018; 652-676 0360-5302 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.09190 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03605302.2018.1459685?journalCode=lpde20 info:eu-repo/semantics/altIdentifier/doi/10.1080/03605302.2018.1459685 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614501092032512 |
score |
13.070432 |