Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
- Autores
- Terra, Joana; Wolanski, Noemi Irene
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the large time behavior of nonnegative solutions of the Cauchy problem u t = R J ( x − y )( u ( y,t ) − u ( x,t )) dy − u p , u ( x, 0) = u 0 ( x ) ∈ L ∞ , where | x | α u 0 ( x ) → A > 0 as | x |→∞ . One of our main goals is the study of the critical case p = 1 + 2 /α for 0 < α < N , left open in previous articles, for which we prove that t α/ 2 | u ( x,t ) − U ( x,t ) | → 0 where U is the solution of the heat equation with absorption with initial datum U ( x, 0) = C A,N | x | − α . Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u 0 in the supercritical case and also in the critical case ( p = 1 + 2 /N ) for bounded and integrable u 0 .
Fil: Terra, Joana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Nonlocal diffusion
Large time behavior - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14924
Ver los metadatos del registro completo
id |
CONICETDig_cf2a20492c6c4cfc78e34272fa18c5a7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14924 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial dataTerra, JoanaWolanski, Noemi IreneNonlocal diffusionLarge time behaviorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the large time behavior of nonnegative solutions of the Cauchy problem u t = R J ( x − y )( u ( y,t ) − u ( x,t )) dy − u p , u ( x, 0) = u 0 ( x ) ∈ L ∞ , where | x | α u 0 ( x ) → A > 0 as | x |→∞ . One of our main goals is the study of the critical case p = 1 + 2 /α for 0 < α < N , left open in previous articles, for which we prove that t α/ 2 | u ( x,t ) − U ( x,t ) | → 0 where U is the solution of the heat equation with absorption with initial datum U ( x, 0) = C A,N | x | − α . Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u 0 in the supercritical case and also in the critical case ( p = 1 + 2 /N ) for bounded and integrable u 0 .Fil: Terra, Joana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmer Inst Mathematical Sciences2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14924Terra, Joana; Wolanski, Noemi Irene; Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 10-2011; 581-6051078-0947enginfo:eu-repo/semantics/altIdentifier/url/https://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6304info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2011.31.581info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:19Zoai:ri.conicet.gov.ar:11336/14924instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:19.244CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
title |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
spellingShingle |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data Terra, Joana Nonlocal diffusion Large time behavior |
title_short |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
title_full |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
title_fullStr |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
title_full_unstemmed |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
title_sort |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
dc.creator.none.fl_str_mv |
Terra, Joana Wolanski, Noemi Irene |
author |
Terra, Joana |
author_facet |
Terra, Joana Wolanski, Noemi Irene |
author_role |
author |
author2 |
Wolanski, Noemi Irene |
author2_role |
author |
dc.subject.none.fl_str_mv |
Nonlocal diffusion Large time behavior |
topic |
Nonlocal diffusion Large time behavior |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the large time behavior of nonnegative solutions of the Cauchy problem u t = R J ( x − y )( u ( y,t ) − u ( x,t )) dy − u p , u ( x, 0) = u 0 ( x ) ∈ L ∞ , where | x | α u 0 ( x ) → A > 0 as | x |→∞ . One of our main goals is the study of the critical case p = 1 + 2 /α for 0 < α < N , left open in previous articles, for which we prove that t α/ 2 | u ( x,t ) − U ( x,t ) | → 0 where U is the solution of the heat equation with absorption with initial datum U ( x, 0) = C A,N | x | − α . Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u 0 in the supercritical case and also in the critical case ( p = 1 + 2 /N ) for bounded and integrable u 0 . Fil: Terra, Joana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study the large time behavior of nonnegative solutions of the Cauchy problem u t = R J ( x − y )( u ( y,t ) − u ( x,t )) dy − u p , u ( x, 0) = u 0 ( x ) ∈ L ∞ , where | x | α u 0 ( x ) → A > 0 as | x |→∞ . One of our main goals is the study of the critical case p = 1 + 2 /α for 0 < α < N , left open in previous articles, for which we prove that t α/ 2 | u ( x,t ) − U ( x,t ) | → 0 where U is the solution of the heat equation with absorption with initial datum U ( x, 0) = C A,N | x | − α . Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u 0 in the supercritical case and also in the critical case ( p = 1 + 2 /N ) for bounded and integrable u 0 . |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14924 Terra, Joana; Wolanski, Noemi Irene; Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 10-2011; 581-605 1078-0947 |
url |
http://hdl.handle.net/11336/14924 |
identifier_str_mv |
Terra, Joana; Wolanski, Noemi Irene; Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 10-2011; 581-605 1078-0947 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6304 info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2011.31.581 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Amer Inst Mathematical Sciences |
publisher.none.fl_str_mv |
Amer Inst Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980324219289600 |
score |
12.993085 |