Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
- Autores
- Terra, J.; Wolanski, N.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Contin. Dyn. Syst. 2011;31(2):581-605
- Materia
-
Large time behavior
Nonlocal diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10780947_v31_n2_p581_Terra
Ver los metadatos del registro completo
| id |
BDUBAFCEN_f23725e67126e978b9375c14472f8022 |
|---|---|
| oai_identifier_str |
paperaa:paper_10780947_v31_n2_p581_Terra |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial dataTerra, J.Wolanski, N.Large time behaviorNonlocal diffusionWe study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10780947_v31_n2_p581_TerraDiscrete Contin. Dyn. Syst. 2011;31(2):581-605reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:21Zpaperaa:paper_10780947_v31_n2_p581_TerraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:23.392Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
| title |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
| spellingShingle |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data Terra, J. Large time behavior Nonlocal diffusion |
| title_short |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
| title_full |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
| title_fullStr |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
| title_full_unstemmed |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
| title_sort |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data |
| dc.creator.none.fl_str_mv |
Terra, J. Wolanski, N. |
| author |
Terra, J. |
| author_facet |
Terra, J. Wolanski, N. |
| author_role |
author |
| author2 |
Wolanski, N. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Large time behavior Nonlocal diffusion |
| topic |
Large time behavior Nonlocal diffusion |
| dc.description.none.fl_txt_mv |
We study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10780947_v31_n2_p581_Terra |
| url |
http://hdl.handle.net/20.500.12110/paper_10780947_v31_n2_p581_Terra |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Discrete Contin. Dyn. Syst. 2011;31(2):581-605 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784878330249216 |
| score |
12.982451 |