Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data

Autores
Terra, J.; Wolanski, N.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Contin. Dyn. Syst. 2011;31(2):581-605
Materia
Large time behavior
Nonlocal diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10780947_v31_n2_p581_Terra

id BDUBAFCEN_f23725e67126e978b9375c14472f8022
oai_identifier_str paperaa:paper_10780947_v31_n2_p581_Terra
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Large time behavior for a nonlocal diffusion equation with absorption and bounded initial dataTerra, J.Wolanski, N.Large time behaviorNonlocal diffusionWe study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10780947_v31_n2_p581_TerraDiscrete Contin. Dyn. Syst. 2011;31(2):581-605reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:21Zpaperaa:paper_10780947_v31_n2_p581_TerraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:23.392Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
title Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
spellingShingle Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
Terra, J.
Large time behavior
Nonlocal diffusion
title_short Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
title_full Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
title_fullStr Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
title_full_unstemmed Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
title_sort Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data
dc.creator.none.fl_str_mv Terra, J.
Wolanski, N.
author Terra, J.
author_facet Terra, J.
Wolanski, N.
author_role author
author2 Wolanski, N.
author2_role author
dc.subject.none.fl_str_mv Large time behavior
Nonlocal diffusion
topic Large time behavior
Nonlocal diffusion
dc.description.none.fl_txt_mv We study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study the large time behavior of nonnegative solutions of the Cauchy problem ut =R J(x,y)(u(y; t),u(x; t)) dy,up, u(x; 0) = u0(x) 2 L∞, where |x|αu0(x) → A < 0 as |x| → 1. One of our main goals is the study of the critical case p = 1+2=ff for 0 > ff > N, left open in previous articles, for which we prove that tff=2ju(x; t) , U(x; t)j → 0 where U is the solution of the heat equation with absorption with initial datum U(x; 0) = CA;N |x|,α. Our proof, involving sequences of rescalings of the solution, allows us to establish also the large time behavior of solutions having more general nonintegrable initial data u0 in the supercritical case and also in the critical case (p = 1 + 2=N) for bounded and integrable u0.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10780947_v31_n2_p581_Terra
url http://hdl.handle.net/20.500.12110/paper_10780947_v31_n2_p581_Terra
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Contin. Dyn. Syst. 2011;31(2):581-605
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784878330249216
score 12.982451