Asymptotic Behavior for a nonlocal diffusion equation on the half line
- Autores
- Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the large time behavior of solutions to a nonlocal diffusion equation, ut=J∗u−u with J smooth, radially symmetric and compactly supported, posed in R+ with zero Dirichlet boundary conditions. In the far-field scale, ξ1≤xt−1/2≤ξ2 with ξ1,ξ2>0, the asymptotic behavior is given by a multiple of the dipole solution for the local heat equation, hence tu(x,t) is bounded above and below by positive constants in this region for large times. The proportionality constant is determined from a conservation law, related to the asymptotic first momentum. In compact sets, after scaling the solution by a factor t3/2, it converges to a multiple of the unique stationary solution of the problem that behaves as x at infinity. The precise proportionality factor is obtained through a matching procedure with the far-field limit. Finally, in the very far-field, x≥t1/2g(t) with g(t)→∞, the solution is proved to be of order o(t−1).
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España
Fil: Wolanski, Noemi Irene. Universidad Autónoma de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Nonlocal Diffusion
Asymptotic Behavior
Matched Asymptotics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18995
Ver los metadatos del registro completo
id |
CONICETDig_32ee0a73457a0d8067d95f242c843bc1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18995 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic Behavior for a nonlocal diffusion equation on the half lineCortázar, CarmenElgueta, ManuelQuirós, FernandoWolanski, Noemi IreneNonlocal DiffusionAsymptotic BehaviorMatched Asymptoticshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the large time behavior of solutions to a nonlocal diffusion equation, ut=J∗u−u with J smooth, radially symmetric and compactly supported, posed in R+ with zero Dirichlet boundary conditions. In the far-field scale, ξ1≤xt−1/2≤ξ2 with ξ1,ξ2>0, the asymptotic behavior is given by a multiple of the dipole solution for the local heat equation, hence tu(x,t) is bounded above and below by positive constants in this region for large times. The proportionality constant is determined from a conservation law, related to the asymptotic first momentum. In compact sets, after scaling the solution by a factor t3/2, it converges to a multiple of the unique stationary solution of the problem that behaves as x at infinity. The precise proportionality factor is obtained through a matching procedure with the far-field limit. Finally, in the very far-field, x≥t1/2g(t) with g(t)→∞, the solution is proved to be of order o(t−1).Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; ChileFil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando. Universidad Autónoma de Madrid; EspañaFil: Wolanski, Noemi Irene. Universidad Autónoma de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmer Inst Mathematical Sciences2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/18995Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a nonlocal diffusion equation on the half line; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 35; 4; 4-2015; 1391-14071078-0947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2015.35.1391info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10559info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1308.4897info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:52Zoai:ri.conicet.gov.ar:11336/18995instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:53.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic Behavior for a nonlocal diffusion equation on the half line |
title |
Asymptotic Behavior for a nonlocal diffusion equation on the half line |
spellingShingle |
Asymptotic Behavior for a nonlocal diffusion equation on the half line Cortázar, Carmen Nonlocal Diffusion Asymptotic Behavior Matched Asymptotics |
title_short |
Asymptotic Behavior for a nonlocal diffusion equation on the half line |
title_full |
Asymptotic Behavior for a nonlocal diffusion equation on the half line |
title_fullStr |
Asymptotic Behavior for a nonlocal diffusion equation on the half line |
title_full_unstemmed |
Asymptotic Behavior for a nonlocal diffusion equation on the half line |
title_sort |
Asymptotic Behavior for a nonlocal diffusion equation on the half line |
dc.creator.none.fl_str_mv |
Cortázar, Carmen Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author |
Cortázar, Carmen |
author_facet |
Cortázar, Carmen Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author_role |
author |
author2 |
Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nonlocal Diffusion Asymptotic Behavior Matched Asymptotics |
topic |
Nonlocal Diffusion Asymptotic Behavior Matched Asymptotics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the large time behavior of solutions to a nonlocal diffusion equation, ut=J∗u−u with J smooth, radially symmetric and compactly supported, posed in R+ with zero Dirichlet boundary conditions. In the far-field scale, ξ1≤xt−1/2≤ξ2 with ξ1,ξ2>0, the asymptotic behavior is given by a multiple of the dipole solution for the local heat equation, hence tu(x,t) is bounded above and below by positive constants in this region for large times. The proportionality constant is determined from a conservation law, related to the asymptotic first momentum. In compact sets, after scaling the solution by a factor t3/2, it converges to a multiple of the unique stationary solution of the problem that behaves as x at infinity. The precise proportionality factor is obtained through a matching procedure with the far-field limit. Finally, in the very far-field, x≥t1/2g(t) with g(t)→∞, the solution is proved to be of order o(t−1). Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile Fil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; Chile Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España Fil: Wolanski, Noemi Irene. Universidad Autónoma de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study the large time behavior of solutions to a nonlocal diffusion equation, ut=J∗u−u with J smooth, radially symmetric and compactly supported, posed in R+ with zero Dirichlet boundary conditions. In the far-field scale, ξ1≤xt−1/2≤ξ2 with ξ1,ξ2>0, the asymptotic behavior is given by a multiple of the dipole solution for the local heat equation, hence tu(x,t) is bounded above and below by positive constants in this region for large times. The proportionality constant is determined from a conservation law, related to the asymptotic first momentum. In compact sets, after scaling the solution by a factor t3/2, it converges to a multiple of the unique stationary solution of the problem that behaves as x at infinity. The precise proportionality factor is obtained through a matching procedure with the far-field limit. Finally, in the very far-field, x≥t1/2g(t) with g(t)→∞, the solution is proved to be of order o(t−1). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18995 Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a nonlocal diffusion equation on the half line; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 35; 4; 4-2015; 1391-1407 1078-0947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18995 |
identifier_str_mv |
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a nonlocal diffusion equation on the half line; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 35; 4; 4-2015; 1391-1407 1078-0947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2015.35.1391 info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10559 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1308.4897 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Amer Inst Mathematical Sciences |
publisher.none.fl_str_mv |
Amer Inst Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269607511982080 |
score |
13.13397 |