A nonlocal convection-diffusion equation

Autores
Ignat, L.I.; Rossi, J.D.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Funct. Anal. 2007;251(2):399-437
Materia
Asymptotic behaviour
Convection-diffusion
Nonlocal diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00221236_v251_n2_p399_Ignat

id BDUBAFCEN_191e98beb2959ac44ad8574caeba3fa5
oai_identifier_str paperaa:paper_00221236_v251_n2_p399_Ignat
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A nonlocal convection-diffusion equationIgnat, L.I.Rossi, J.D.Asymptotic behaviourConvection-diffusionNonlocal diffusionIn this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00221236_v251_n2_p399_IgnatJ. Funct. Anal. 2007;251(2):399-437reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00221236_v251_n2_p399_IgnatInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.828Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A nonlocal convection-diffusion equation
title A nonlocal convection-diffusion equation
spellingShingle A nonlocal convection-diffusion equation
Ignat, L.I.
Asymptotic behaviour
Convection-diffusion
Nonlocal diffusion
title_short A nonlocal convection-diffusion equation
title_full A nonlocal convection-diffusion equation
title_fullStr A nonlocal convection-diffusion equation
title_full_unstemmed A nonlocal convection-diffusion equation
title_sort A nonlocal convection-diffusion equation
dc.creator.none.fl_str_mv Ignat, L.I.
Rossi, J.D.
author Ignat, L.I.
author_facet Ignat, L.I.
Rossi, J.D.
author_role author
author2 Rossi, J.D.
author2_role author
dc.subject.none.fl_str_mv Asymptotic behaviour
Convection-diffusion
Nonlocal diffusion
topic Asymptotic behaviour
Convection-diffusion
Nonlocal diffusion
dc.description.none.fl_txt_mv In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00221236_v251_n2_p399_Ignat
url http://hdl.handle.net/20.500.12110/paper_00221236_v251_n2_p399_Ignat
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Funct. Anal. 2007;251(2):399-437
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618740843413504
score 13.070432