A nonlocal convection-diffusion equation
- Autores
- Ignat, L.I.; Rossi, J.D.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Funct. Anal. 2007;251(2):399-437
- Materia
-
Asymptotic behaviour
Convection-diffusion
Nonlocal diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00221236_v251_n2_p399_Ignat
Ver los metadatos del registro completo
id |
BDUBAFCEN_191e98beb2959ac44ad8574caeba3fa5 |
---|---|
oai_identifier_str |
paperaa:paper_00221236_v251_n2_p399_Ignat |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A nonlocal convection-diffusion equationIgnat, L.I.Rossi, J.D.Asymptotic behaviourConvection-diffusionNonlocal diffusionIn this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00221236_v251_n2_p399_IgnatJ. Funct. Anal. 2007;251(2):399-437reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00221236_v251_n2_p399_IgnatInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.828Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A nonlocal convection-diffusion equation |
title |
A nonlocal convection-diffusion equation |
spellingShingle |
A nonlocal convection-diffusion equation Ignat, L.I. Asymptotic behaviour Convection-diffusion Nonlocal diffusion |
title_short |
A nonlocal convection-diffusion equation |
title_full |
A nonlocal convection-diffusion equation |
title_fullStr |
A nonlocal convection-diffusion equation |
title_full_unstemmed |
A nonlocal convection-diffusion equation |
title_sort |
A nonlocal convection-diffusion equation |
dc.creator.none.fl_str_mv |
Ignat, L.I. Rossi, J.D. |
author |
Ignat, L.I. |
author_facet |
Ignat, L.I. Rossi, J.D. |
author_role |
author |
author2 |
Rossi, J.D. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Asymptotic behaviour Convection-diffusion Nonlocal diffusion |
topic |
Asymptotic behaviour Convection-diffusion Nonlocal diffusion |
dc.description.none.fl_txt_mv |
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J * u - u + G * (f (u)) - f (u) in Rd, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation ut = Δ u + b ṡ ∇ (f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t → ∞ when f (u) = | u |q - 1 u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. © 2007 Elsevier Inc. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00221236_v251_n2_p399_Ignat |
url |
http://hdl.handle.net/20.500.12110/paper_00221236_v251_n2_p399_Ignat |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Funct. Anal. 2007;251(2):399-437 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740843413504 |
score |
13.070432 |