Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case
- Autores
- Salort, Ariel Martin; Afonso Mourao Terra, Joana Isabel; Wolanski, Noemi Irene
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we continue our study of the large time behavior of the bounded solution to the nonlocal diffusion equation with absorption ut=Lu−upin RN×(0,∞),u(x,0)=u0(x)in RN, where p>1, u0⩾0 and bounded and Lu(x,t)=∫J(x−y)(u(y,t)−u(x,t))dy with J∈C0∞(Bd), radially symmetric, J>0 in Bd, with ∫J=1. Our assumption on the initial datum is that 0⩽u0∈L∞(RN) and |x|αu0(x)→A>0as |x|→∞. This problem was studied in [Proc. Amer. Math. Soc. 139(4) (2011), 1421–1432; Discrete Cont. Dyn. Syst. A, 31(2) (2011), 581–605] in the supercritical and critical cases p⩾1+2/α. In the present paper we study the subcritical case 10. Of independent interest is our study of the positive eigenfunction of the operator L in the ball BR in the L∞ setting that we include in Section 3.
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Afonso Mourao Terra, Joana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
LARGE TIME BEHAVIOR
NONLOCAL DIFFUSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/116926
Ver los metadatos del registro completo
id |
CONICETDig_97d44ea37beeebdcefc22bda35ededf7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/116926 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical caseSalort, Ariel MartinAfonso Mourao Terra, Joana IsabelWolanski, Noemi IreneLARGE TIME BEHAVIORNONLOCAL DIFFUSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we continue our study of the large time behavior of the bounded solution to the nonlocal diffusion equation with absorption ut=Lu−upin RN×(0,∞),u(x,0)=u0(x)in RN, where p>1, u0⩾0 and bounded and Lu(x,t)=∫J(x−y)(u(y,t)−u(x,t))dy with J∈C0∞(Bd), radially symmetric, J>0 in Bd, with ∫J=1. Our assumption on the initial datum is that 0⩽u0∈L∞(RN) and |x|αu0(x)→A>0as |x|→∞. This problem was studied in [Proc. Amer. Math. Soc. 139(4) (2011), 1421–1432; Discrete Cont. Dyn. Syst. A, 31(2) (2011), 581–605] in the supercritical and critical cases p⩾1+2/α. In the present paper we study the subcritical case 10. Of independent interest is our study of the positive eigenfunction of the operator L in the ball BR in the L∞ setting that we include in Section 3.Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Afonso Mourao Terra, Joana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaIOS Press2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116926Salort, Ariel Martin; Afonso Mourao Terra, Joana Isabel; Wolanski, Noemi Irene; Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case; IOS Press; Asymptotic Analysis; 95; 1-2; 10-2015; 39-570921-7134CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://content.iospress.com/articles/asymptotic-analysis/asy1320info:eu-repo/semantics/altIdentifier/doi/10.3233/ASY-151320info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:17Zoai:ri.conicet.gov.ar:11336/116926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:18.018CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case |
title |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case |
spellingShingle |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case Salort, Ariel Martin LARGE TIME BEHAVIOR NONLOCAL DIFFUSION |
title_short |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case |
title_full |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case |
title_fullStr |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case |
title_full_unstemmed |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case |
title_sort |
Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case |
dc.creator.none.fl_str_mv |
Salort, Ariel Martin Afonso Mourao Terra, Joana Isabel Wolanski, Noemi Irene |
author |
Salort, Ariel Martin |
author_facet |
Salort, Ariel Martin Afonso Mourao Terra, Joana Isabel Wolanski, Noemi Irene |
author_role |
author |
author2 |
Afonso Mourao Terra, Joana Isabel Wolanski, Noemi Irene |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LARGE TIME BEHAVIOR NONLOCAL DIFFUSION |
topic |
LARGE TIME BEHAVIOR NONLOCAL DIFFUSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we continue our study of the large time behavior of the bounded solution to the nonlocal diffusion equation with absorption ut=Lu−upin RN×(0,∞),u(x,0)=u0(x)in RN, where p>1, u0⩾0 and bounded and Lu(x,t)=∫J(x−y)(u(y,t)−u(x,t))dy with J∈C0∞(Bd), radially symmetric, J>0 in Bd, with ∫J=1. Our assumption on the initial datum is that 0⩽u0∈L∞(RN) and |x|αu0(x)→A>0as |x|→∞. This problem was studied in [Proc. Amer. Math. Soc. 139(4) (2011), 1421–1432; Discrete Cont. Dyn. Syst. A, 31(2) (2011), 581–605] in the supercritical and critical cases p⩾1+2/α. In the present paper we study the subcritical case 10. Of independent interest is our study of the positive eigenfunction of the operator L in the ball BR in the L∞ setting that we include in Section 3. Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Afonso Mourao Terra, Joana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this paper we continue our study of the large time behavior of the bounded solution to the nonlocal diffusion equation with absorption ut=Lu−upin RN×(0,∞),u(x,0)=u0(x)in RN, where p>1, u0⩾0 and bounded and Lu(x,t)=∫J(x−y)(u(y,t)−u(x,t))dy with J∈C0∞(Bd), radially symmetric, J>0 in Bd, with ∫J=1. Our assumption on the initial datum is that 0⩽u0∈L∞(RN) and |x|αu0(x)→A>0as |x|→∞. This problem was studied in [Proc. Amer. Math. Soc. 139(4) (2011), 1421–1432; Discrete Cont. Dyn. Syst. A, 31(2) (2011), 581–605] in the supercritical and critical cases p⩾1+2/α. In the present paper we study the subcritical case 10. Of independent interest is our study of the positive eigenfunction of the operator L in the ball BR in the L∞ setting that we include in Section 3. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/116926 Salort, Ariel Martin; Afonso Mourao Terra, Joana Isabel; Wolanski, Noemi Irene; Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case; IOS Press; Asymptotic Analysis; 95; 1-2; 10-2015; 39-57 0921-7134 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/116926 |
identifier_str_mv |
Salort, Ariel Martin; Afonso Mourao Terra, Joana Isabel; Wolanski, Noemi Irene; Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: The subcritical case; IOS Press; Asymptotic Analysis; 95; 1-2; 10-2015; 39-57 0921-7134 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://content.iospress.com/articles/asymptotic-analysis/asy1320 info:eu-repo/semantics/altIdentifier/doi/10.3233/ASY-151320 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOS Press |
publisher.none.fl_str_mv |
IOS Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268848741416960 |
score |
13.21921 |