Multilinear Cesàro maximal operators

Autores
Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Materia
Multi(Sub)Linear Maximal Operators
Cesàro Operators
Weighted Norm Inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22431

id CONICETDig_a1c254a59a97da75611427794014c07f
oai_identifier_str oai:ri.conicet.gov.ar:11336/22431
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multilinear Cesàro maximal operatorsBernardis, Ana LuciaCrescimbeni, Raquel LilianaMartín Reyes, Francisco JavierMulti(Sub)Linear Maximal OperatorsCesàro OperatorsWeighted Norm Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.).Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaElsevier Inc2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22431Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier; Multilinear Cesàro maximal operators; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 397; 1; 7-2012; 191-2040022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.07.037info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12006002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:00Zoai:ri.conicet.gov.ar:11336/22431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:00.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multilinear Cesàro maximal operators
title Multilinear Cesàro maximal operators
spellingShingle Multilinear Cesàro maximal operators
Bernardis, Ana Lucia
Multi(Sub)Linear Maximal Operators
Cesàro Operators
Weighted Norm Inequalities
title_short Multilinear Cesàro maximal operators
title_full Multilinear Cesàro maximal operators
title_fullStr Multilinear Cesàro maximal operators
title_full_unstemmed Multilinear Cesàro maximal operators
title_sort Multilinear Cesàro maximal operators
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Crescimbeni, Raquel Liliana
Martín Reyes, Francisco Javier
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Crescimbeni, Raquel Liliana
Martín Reyes, Francisco Javier
author_role author
author2 Crescimbeni, Raquel Liliana
Martín Reyes, Francisco Javier
author2_role author
author
dc.subject.none.fl_str_mv Multi(Sub)Linear Maximal Operators
Cesàro Operators
Weighted Norm Inequalities
topic Multi(Sub)Linear Maximal Operators
Cesàro Operators
Weighted Norm Inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
description The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.).
publishDate 2012
dc.date.none.fl_str_mv 2012-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22431
Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier; Multilinear Cesàro maximal operators; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 397; 1; 7-2012; 191-204
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22431
identifier_str_mv Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier; Multilinear Cesàro maximal operators; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 397; 1; 7-2012; 191-204
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.07.037
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12006002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268830498291712
score 13.13397