Multilinear Cesàro maximal operators
- Autores
- Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España - Materia
-
Multi(Sub)Linear Maximal Operators
Cesàro Operators
Weighted Norm Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22431
Ver los metadatos del registro completo
id |
CONICETDig_a1c254a59a97da75611427794014c07f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22431 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multilinear Cesàro maximal operatorsBernardis, Ana LuciaCrescimbeni, Raquel LilianaMartín Reyes, Francisco JavierMulti(Sub)Linear Maximal OperatorsCesàro OperatorsWeighted Norm Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.).Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaElsevier Inc2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22431Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier; Multilinear Cesàro maximal operators; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 397; 1; 7-2012; 191-2040022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.07.037info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12006002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:00Zoai:ri.conicet.gov.ar:11336/22431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:00.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multilinear Cesàro maximal operators |
title |
Multilinear Cesàro maximal operators |
spellingShingle |
Multilinear Cesàro maximal operators Bernardis, Ana Lucia Multi(Sub)Linear Maximal Operators Cesàro Operators Weighted Norm Inequalities |
title_short |
Multilinear Cesàro maximal operators |
title_full |
Multilinear Cesàro maximal operators |
title_fullStr |
Multilinear Cesàro maximal operators |
title_full_unstemmed |
Multilinear Cesàro maximal operators |
title_sort |
Multilinear Cesàro maximal operators |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Crescimbeni, Raquel Liliana Martín Reyes, Francisco Javier |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Crescimbeni, Raquel Liliana Martín Reyes, Francisco Javier |
author_role |
author |
author2 |
Crescimbeni, Raquel Liliana Martín Reyes, Francisco Javier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Multi(Sub)Linear Maximal Operators Cesàro Operators Weighted Norm Inequalities |
topic |
Multi(Sub)Linear Maximal Operators Cesàro Operators Weighted Norm Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.). Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España |
description |
The study of the almost everywhere convergence of the product of m Cesàro-α averages leads to the characterization of the boundedness of the associated multi(sub)linear maximal operator. We characterize weighted weak type and strong type inequalities for this operator, extending results by Lerner et al. [A. Lerner, S. Ombrosi, C. Pérez, R. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009) 1222?1264.]. We also study the restricted weak type inequalities which are of particular interest in our case (they were not considered by Lerner et al.). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22431 Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier; Multilinear Cesàro maximal operators; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 397; 1; 7-2012; 191-204 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22431 |
identifier_str_mv |
Bernardis, Ana Lucia; Crescimbeni, Raquel Liliana; Martín Reyes, Francisco Javier; Multilinear Cesàro maximal operators; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 397; 1; 7-2012; 191-204 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2012.07.037 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12006002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268830498291712 |
score |
13.13397 |