Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
- Autores
- Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
We show that if v∈A∞ and u∈A1 , then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that T ( f v) v L1,∞(uv) ≤ c f L1(uv), where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
Fil: Kangwei, Li. Basque Center for Applied Mathematics; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad del País Vasco; España - Materia
-
INEQUALITIES
MIXED
WEIGHTED - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85566
Ver los metadatos del registro completo
id |
CONICETDig_d6da0641116ddd57c0403aaf8421cb05 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85566 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimatesKangwei, LiOmbrosi, Sheldy JavierPérez, CarlosINEQUALITIESMIXEDWEIGHTEDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.We show that if v∈A∞ and u∈A1 , then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that T ( f v) v L1,∞(uv) ≤ c f L1(uv), where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.Fil: Kangwei, Li. Basque Center for Applied Mathematics; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad del País Vasco; EspañaSpringer Heidelberg2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85566Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos; Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates; Springer Heidelberg; Mathematische Annalen; 374; 1-2; 6-2019; 907-9290025-58311432-1807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00208-018-1762-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-018-1762-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.01530info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:10Zoai:ri.conicet.gov.ar:11336/85566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:10.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates |
title |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates |
spellingShingle |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates Kangwei, Li INEQUALITIES MIXED WEIGHTED |
title_short |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates |
title_full |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates |
title_fullStr |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates |
title_full_unstemmed |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates |
title_sort |
Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates |
dc.creator.none.fl_str_mv |
Kangwei, Li Ombrosi, Sheldy Javier Pérez, Carlos |
author |
Kangwei, Li |
author_facet |
Kangwei, Li Ombrosi, Sheldy Javier Pérez, Carlos |
author_role |
author |
author2 |
Ombrosi, Sheldy Javier Pérez, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INEQUALITIES MIXED WEIGHTED |
topic |
INEQUALITIES MIXED WEIGHTED |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates. We show that if v∈A∞ and u∈A1 , then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that T ( f v) v L1,∞(uv) ≤ c f L1(uv), where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates. Fil: Kangwei, Li. Basque Center for Applied Mathematics; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Pérez, Carlos. Universidad del País Vasco; España |
description |
We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85566 Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos; Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates; Springer Heidelberg; Mathematische Annalen; 374; 1-2; 6-2019; 907-929 0025-5831 1432-1807 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85566 |
identifier_str_mv |
Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos; Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates; Springer Heidelberg; Mathematische Annalen; 374; 1-2; 6-2019; 907-929 0025-5831 1432-1807 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00208-018-1762-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-018-1762-0 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.01530 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781511117832192 |
score |
12.982451 |