Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates

Autores
Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
We show that if v∈A∞ and u∈A1 , then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that T ( f v) v L1,∞(uv) ≤ c f L1(uv), where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
Fil: Kangwei, Li. Basque Center for Applied Mathematics; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad del País Vasco; España
Materia
INEQUALITIES
MIXED
WEIGHTED
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85566

id CONICETDig_d6da0641116ddd57c0403aaf8421cb05
oai_identifier_str oai:ri.conicet.gov.ar:11336/85566
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimatesKangwei, LiOmbrosi, Sheldy JavierPérez, CarlosINEQUALITIESMIXEDWEIGHTEDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.We show that if v∈A∞ and u∈A1 , then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that T ( f v) v L1,∞(uv) ≤ c f L1(uv), where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.Fil: Kangwei, Li. Basque Center for Applied Mathematics; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Pérez, Carlos. Universidad del País Vasco; EspañaSpringer Heidelberg2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85566Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos; Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates; Springer Heidelberg; Mathematische Annalen; 374; 1-2; 6-2019; 907-9290025-58311432-1807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00208-018-1762-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-018-1762-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.01530info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:10Zoai:ri.conicet.gov.ar:11336/85566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:10.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
title Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
spellingShingle Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
Kangwei, Li
INEQUALITIES
MIXED
WEIGHTED
title_short Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
title_full Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
title_fullStr Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
title_full_unstemmed Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
title_sort Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
dc.creator.none.fl_str_mv Kangwei, Li
Ombrosi, Sheldy Javier
Pérez, Carlos
author Kangwei, Li
author_facet Kangwei, Li
Ombrosi, Sheldy Javier
Pérez, Carlos
author_role author
author2 Ombrosi, Sheldy Javier
Pérez, Carlos
author2_role author
author
dc.subject.none.fl_str_mv INEQUALITIES
MIXED
WEIGHTED
topic INEQUALITIES
MIXED
WEIGHTED
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
We show that if v∈A∞ and u∈A1 , then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that T ( f v) v L1,∞(uv) ≤ c f L1(uv), where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
Fil: Kangwei, Li. Basque Center for Applied Mathematics; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Pérez, Carlos. Universidad del País Vasco; España
description We show that if v∈ A∞ and u∈ A1, then there is a constant c depending on the A1 constant of u and the A∞ constant of v such that ∥T(fv)v∥L1,∞(uv)≤c‖f‖L1(uv),where T can be the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. This result was conjectured in Cruz-Uribe et al. (Int Math Res Not 30:1849–1871, 2005) and constitutes the most singular case of some extensions of several problems proposed by Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
publishDate 2019
dc.date.none.fl_str_mv 2019-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85566
Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos; Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates; Springer Heidelberg; Mathematische Annalen; 374; 1-2; 6-2019; 907-929
0025-5831
1432-1807
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85566
identifier_str_mv Kangwei, Li; Ombrosi, Sheldy Javier; Pérez, Carlos; Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates; Springer Heidelberg; Mathematische Annalen; 374; 1-2; 6-2019; 907-929
0025-5831
1432-1807
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00208-018-1762-0
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-018-1762-0
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.01530
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781511117832192
score 12.982451