Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
- Autores
- Pradolini, Gladis Guadalupe
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator.
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Multilineal Operators
Fractional Integrals
Maximal Operators
Weighted Norm Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75187
Ver los metadatos del registro completo
id |
CONICETDig_a2a144e6a520c5e4ea8b45bc041621d4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75187 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operatorsPradolini, Gladis GuadalupeMultilineal OperatorsFractional IntegralsMaximal OperatorsWeighted Norm Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator.Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaAcademic Press Inc Elsevier Science2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75187Pradolini, Gladis Guadalupe; Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 367; 2; 7-2010; 640-6560022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.02.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:36Zoai:ri.conicet.gov.ar:11336/75187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:36.965CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators |
title |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators |
spellingShingle |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators Pradolini, Gladis Guadalupe Multilineal Operators Fractional Integrals Maximal Operators Weighted Norm Inequalities |
title_short |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators |
title_full |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators |
title_fullStr |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators |
title_full_unstemmed |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators |
title_sort |
Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators |
dc.creator.none.fl_str_mv |
Pradolini, Gladis Guadalupe |
author |
Pradolini, Gladis Guadalupe |
author_facet |
Pradolini, Gladis Guadalupe |
author_role |
author |
dc.subject.none.fl_str_mv |
Multilineal Operators Fractional Integrals Maximal Operators Weighted Norm Inequalities |
topic |
Multilineal Operators Fractional Integrals Maximal Operators Weighted Norm Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator. Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75187 Pradolini, Gladis Guadalupe; Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 367; 2; 7-2010; 640-656 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75187 |
identifier_str_mv |
Pradolini, Gladis Guadalupe; Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 367; 2; 7-2010; 640-656 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.02.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268931835822080 |
score |
13.13397 |