Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators

Autores
Pradolini, Gladis Guadalupe
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator.
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Multilineal Operators
Fractional Integrals
Maximal Operators
Weighted Norm Inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/75187

id CONICETDig_a2a144e6a520c5e4ea8b45bc041621d4
oai_identifier_str oai:ri.conicet.gov.ar:11336/75187
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operatorsPradolini, Gladis GuadalupeMultilineal OperatorsFractional IntegralsMaximal OperatorsWeighted Norm Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator.Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaAcademic Press Inc Elsevier Science2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75187Pradolini, Gladis Guadalupe; Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 367; 2; 7-2010; 640-6560022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.02.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:36Zoai:ri.conicet.gov.ar:11336/75187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:36.965CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
title Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
spellingShingle Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
Pradolini, Gladis Guadalupe
Multilineal Operators
Fractional Integrals
Maximal Operators
Weighted Norm Inequalities
title_short Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
title_full Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
title_fullStr Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
title_full_unstemmed Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
title_sort Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators
dc.creator.none.fl_str_mv Pradolini, Gladis Guadalupe
author Pradolini, Gladis Guadalupe
author_facet Pradolini, Gladis Guadalupe
author_role author
dc.subject.none.fl_str_mv Multilineal Operators
Fractional Integrals
Maximal Operators
Weighted Norm Inequalities
topic Multilineal Operators
Fractional Integrals
Maximal Operators
Weighted Norm Inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator.
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this article we prove weighted norm inequalities and pointwise estimates between the multilinear fractional integral operator and the multilinear fractional maximal. As a consequence of these estimations we obtain weighted weak and strong inequalities for the multilinear fractional maximal operator or function. In particular, we extend some results given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove weighted pointwise estimates between the multilinear fractional maximal operator Mα, B associated to a Young function B and the multilinear maximal operators Mψ = M0, ψ, ψ (t) = B (t1 - α / (n m))n m / (n m - α). As an application of these estimate we obtain a direct proof of the Lp - Lq boundedness results of Mα, B for the case B (t) = t and Bk (t) = t (1 + log+ t)k when 1 / q = 1 / p - α / n. We also give sufficient conditions on the weights involved in the boundedness results of Mα, B that generalizes those given in Moen (2009) [22] for B (t) = t. Finally, we prove some boundedness results in Banach function spaces for a generalized version of the multilinear fractional maximal operator.
publishDate 2010
dc.date.none.fl_str_mv 2010-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/75187
Pradolini, Gladis Guadalupe; Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 367; 2; 7-2010; 640-656
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/75187
identifier_str_mv Pradolini, Gladis Guadalupe; Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 367; 2; 7-2010; 640-656
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.02.008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268931835822080
score 13.13397