Quantitative weighted mixed weak-type inequalities for classical operators
- Autores
- Ombrosi, Sheldy Javier; Pérez Moreno, Carlos; Recchi, Diana Jorgelina
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved.
Fil: Ombrosi, Sheldy Javier. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina
Fil: Pérez Moreno, Carlos. Universidad del Pais Vasco; España
Fil: Recchi, Diana Jorgelina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina - Materia
-
Operators
Weights
Mixed Weak Type Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11916
Ver los metadatos del registro completo
id |
CONICETDig_56d916358d550f797eb3c4a4c8eb9509 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11916 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantitative weighted mixed weak-type inequalities for classical operatorsOmbrosi, Sheldy JavierPérez Moreno, CarlosRecchi, Diana JorgelinaOperatorsWeightsMixed Weak Type Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved.Fil: Ombrosi, Sheldy Javier. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); ArgentinaFil: Pérez Moreno, Carlos. Universidad del Pais Vasco; EspañaFil: Recchi, Diana Jorgelina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); ArgentinaIndiana University Mathematics Journal2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11916Ombrosi, Sheldy Javier; Pérez Moreno, Carlos ; Recchi, Diana Jorgelina; Quantitative weighted mixed weak-type inequalities for classical operators; Indiana University Mathematics Journal; Indiana University Mathematics Journal; 65; 2; 3-2016; 615-6400022-2518enginfo:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/ISSUE/2016/2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.4339info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:36Zoai:ri.conicet.gov.ar:11336/11916instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:36.809CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantitative weighted mixed weak-type inequalities for classical operators |
title |
Quantitative weighted mixed weak-type inequalities for classical operators |
spellingShingle |
Quantitative weighted mixed weak-type inequalities for classical operators Ombrosi, Sheldy Javier Operators Weights Mixed Weak Type Inequalities |
title_short |
Quantitative weighted mixed weak-type inequalities for classical operators |
title_full |
Quantitative weighted mixed weak-type inequalities for classical operators |
title_fullStr |
Quantitative weighted mixed weak-type inequalities for classical operators |
title_full_unstemmed |
Quantitative weighted mixed weak-type inequalities for classical operators |
title_sort |
Quantitative weighted mixed weak-type inequalities for classical operators |
dc.creator.none.fl_str_mv |
Ombrosi, Sheldy Javier Pérez Moreno, Carlos Recchi, Diana Jorgelina |
author |
Ombrosi, Sheldy Javier |
author_facet |
Ombrosi, Sheldy Javier Pérez Moreno, Carlos Recchi, Diana Jorgelina |
author_role |
author |
author2 |
Pérez Moreno, Carlos Recchi, Diana Jorgelina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Operators Weights Mixed Weak Type Inequalities |
topic |
Operators Weights Mixed Weak Type Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved. Fil: Ombrosi, Sheldy Javier. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina Fil: Pérez Moreno, Carlos. Universidad del Pais Vasco; España Fil: Recchi, Diana Jorgelina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina |
description |
We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11916 Ombrosi, Sheldy Javier; Pérez Moreno, Carlos ; Recchi, Diana Jorgelina; Quantitative weighted mixed weak-type inequalities for classical operators; Indiana University Mathematics Journal; Indiana University Mathematics Journal; 65; 2; 3-2016; 615-640 0022-2518 |
url |
http://hdl.handle.net/11336/11916 |
identifier_str_mv |
Ombrosi, Sheldy Javier; Pérez Moreno, Carlos ; Recchi, Diana Jorgelina; Quantitative weighted mixed weak-type inequalities for classical operators; Indiana University Mathematics Journal; Indiana University Mathematics Journal; 65; 2; 3-2016; 615-640 0022-2518 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/ISSUE/2016/2 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.4339 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Indiana University Mathematics Journal |
publisher.none.fl_str_mv |
Indiana University Mathematics Journal |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606007756881920 |
score |
13.000565 |