Quantitative weighted mixed weak-type inequalities for classical operators

Autores
Ombrosi, Sheldy Javier; Pérez Moreno, Carlos; Recchi, Diana Jorgelina
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved.
Fil: Ombrosi, Sheldy Javier. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina
Fil: Pérez Moreno, Carlos. Universidad del Pais Vasco; España
Fil: Recchi, Diana Jorgelina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina
Materia
Operators
Weights
Mixed Weak Type Inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11916

id CONICETDig_56d916358d550f797eb3c4a4c8eb9509
oai_identifier_str oai:ri.conicet.gov.ar:11336/11916
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantitative weighted mixed weak-type inequalities for classical operatorsOmbrosi, Sheldy JavierPérez Moreno, CarlosRecchi, Diana JorgelinaOperatorsWeightsMixed Weak Type Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved.Fil: Ombrosi, Sheldy Javier. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); ArgentinaFil: Pérez Moreno, Carlos. Universidad del Pais Vasco; EspañaFil: Recchi, Diana Jorgelina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); ArgentinaIndiana University Mathematics Journal2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11916Ombrosi, Sheldy Javier; Pérez Moreno, Carlos ; Recchi, Diana Jorgelina; Quantitative weighted mixed weak-type inequalities for classical operators; Indiana University Mathematics Journal; Indiana University Mathematics Journal; 65; 2; 3-2016; 615-6400022-2518enginfo:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/ISSUE/2016/2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.4339info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:36Zoai:ri.conicet.gov.ar:11336/11916instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:36.809CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantitative weighted mixed weak-type inequalities for classical operators
title Quantitative weighted mixed weak-type inequalities for classical operators
spellingShingle Quantitative weighted mixed weak-type inequalities for classical operators
Ombrosi, Sheldy Javier
Operators
Weights
Mixed Weak Type Inequalities
title_short Quantitative weighted mixed weak-type inequalities for classical operators
title_full Quantitative weighted mixed weak-type inequalities for classical operators
title_fullStr Quantitative weighted mixed weak-type inequalities for classical operators
title_full_unstemmed Quantitative weighted mixed weak-type inequalities for classical operators
title_sort Quantitative weighted mixed weak-type inequalities for classical operators
dc.creator.none.fl_str_mv Ombrosi, Sheldy Javier
Pérez Moreno, Carlos
Recchi, Diana Jorgelina
author Ombrosi, Sheldy Javier
author_facet Ombrosi, Sheldy Javier
Pérez Moreno, Carlos
Recchi, Diana Jorgelina
author_role author
author2 Pérez Moreno, Carlos
Recchi, Diana Jorgelina
author2_role author
author
dc.subject.none.fl_str_mv Operators
Weights
Mixed Weak Type Inequalities
topic Operators
Weights
Mixed Weak Type Inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved.
Fil: Ombrosi, Sheldy Javier. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina
Fil: Pérez Moreno, Carlos. Universidad del Pais Vasco; España
Fil: Recchi, Diana Jorgelina. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina
description We improve on several mixed weak type inequalities both for the Hardy-Littlewoodmaximal function and for Calderón-Zygmund operators. These type of inequalitieswere considered by Muckenhoupt and Wheeden and later on by Sawyer estimatingthe L1,∞(uv) norm of v−1T(fv) for special cases. The emphasis is made in provingnew and more precise quantitative estimates involving the Ap or A∞ constants ofthe weights involved.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11916
Ombrosi, Sheldy Javier; Pérez Moreno, Carlos ; Recchi, Diana Jorgelina; Quantitative weighted mixed weak-type inequalities for classical operators; Indiana University Mathematics Journal; Indiana University Mathematics Journal; 65; 2; 3-2016; 615-640
0022-2518
url http://hdl.handle.net/11336/11916
identifier_str_mv Ombrosi, Sheldy Javier; Pérez Moreno, Carlos ; Recchi, Diana Jorgelina; Quantitative weighted mixed weak-type inequalities for classical operators; Indiana University Mathematics Journal; Indiana University Mathematics Journal; 65; 2; 3-2016; 615-640
0022-2518
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/ISSUE/2016/2
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.4339
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Indiana University Mathematics Journal
publisher.none.fl_str_mv Indiana University Mathematics Journal
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606007756881920
score 13.000565